Shapeshifting: how is plant ER architecture manipulated by pathogen effectors?

变形:病原体效应子如何操纵植物内质网结构?

基本信息

  • 批准号:
    BB/W007126/1
  • 负责人:
  • 金额:
    $ 67.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The world population is predicted to reach 9.7 billion by 2050, compared to today's 7.9 billion. More food needs to be produced from ever-dwindling natural resources with the additional challenges arising from climate change. The UK imports 45% of all its food and so future food security is both a global and a national issue that needs urgently addressing. One key approach is to reduce waste in the food chain. Between 17-30% of global crops are lost to pests and disease both pre- and post-harvest. The big challenge is therefore to breed crops with enhanced tolerance to plant pathogens (disease-causing microorganisms) but, crucially, without adversely compromising yield.The endoplasmic reticulum (ER) is a major protein and lipid factory present in every plant cell. It forms a mesh-like network of membrane tubules and sheets, which extends throughout the cell and between nearby cells and is constantly reshaping and reorganising to meet the cells' changing demand for proteins. We have recently discovered that when a harmful bacterial pathogen infects plant leaves, it causes a dramatic and rapid reorganisation of the plant ER, which seems to weaken the ER's capacity to participate in the cellular defence and therefore helps the pathogen invade. Our project will establish precisely how particular molecules produced by the pathogen, called 'effectors', remodel the ER architecture, and which specific effectors participate in this process. We aim to use this information, together with a toolkit of ER-shaping proteins that we have produced and studied over the last 10 years, in order to re-engineer the plant's ER into a bespoke form that is better suited to withstand pathogen attack. Success will represent a substantial impact on reducing crop losses and thus increasing our food security.
预计到2050年,世界人口将达到97亿,而目前为79亿。随着气候变化带来的额外挑战,需要从不断减少的自然资源中生产更多的粮食。英国45%的粮食依赖进口,因此未来的粮食安全既是一个全球性问题,也是一个迫切需要解决的国家问题。一个关键的方法是减少食物链中的浪费。全球17-30%的农作物在收获前和收获后都因病虫害而损失。因此,最大的挑战是培育对植物病原体(致病微生物)具有增强的耐受性的作物,但关键是不会对产量产生不利影响。内质网(ER)是存在于每个植物细胞中的主要蛋白质和脂质工厂。它形成了一个网状的膜管和膜层网络,延伸到整个细胞和附近的细胞之间,并不断重塑和重组,以满足细胞对蛋白质不断变化的需求。我们最近发现,当有害的细菌病原体感染植物叶片时,它会导致植物ER的戏剧性和快速重组,这似乎削弱了ER参与细胞防御的能力,因此有助于病原体入侵。我们的项目将精确地确定病原体产生的特定分子(称为“效应子”)如何重塑ER结构,以及哪些特定效应子参与这一过程。我们的目标是利用这些信息,以及我们在过去10年中生产和研究的ER成形蛋白的工具包,将植物的ER重新设计成更适合抵御病原体攻击的定制形式。成功将对减少作物损失,从而提高我们的粮食安全产生重大影响。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The chloroplast plays a central role in facilitating MAMP-Triggered Immunity, pathogen suppression of immunity and crosstalk with abiotic stress.
叶绿体在促进 MAMP 触发的免疫、病原体免疫抑制以及与非生物胁迫的串扰方面发挥着核心作用。
  • DOI:
    10.22541/au.165407049.94925720/v1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Breen S
  • 通讯作者:
    Breen S
Chloroplasts play a central role in facilitating MAMP-triggered immunity, pathogen suppression of immunity and crosstalk with abiotic stress.
  • DOI:
    10.1111/pce.14408
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Breen, Susan;Hussain, Rana;Breeze, Emily;Brown, Hannah;Alzwiy, Ibrahim;Abdelsayed, Sara;Gaikwad, Trupti;Grant, Murray
  • 通讯作者:
    Grant, Murray
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lorenzo Frigerio其他文献

Lorenzo Frigerio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lorenzo Frigerio', 18)}}的其他基金

21ENGBIO - Converting a cellular dustbin into a protein storing organelle
21ENGBIO - 将细胞垃圾箱转变为蛋白质储存细胞器
  • 批准号:
    BB/W012162/1
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Research Grant
13 ERA-CAPS PER-ASPERA Frigerio
13 ERA-CAPS PER-ASPERA Frigerio
  • 批准号:
    BB/M000052/1
  • 财政年份:
    2014
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Research Grant
Tissue specific aquaporin expression for seedling water stress resistance
组织特异性水通道蛋白表达用于幼苗抗水胁迫
  • 批准号:
    BB/J017582/1
  • 财政年份:
    2012
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Research Grant

相似海外基金

Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
  • 批准号:
    BB/Z514810/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Fellowship
Collaborative Research: How to manipulate a plant? Testing for conserved effectors and plant responses in gall induction and growth using a multi-species comparative approach.
合作研究:如何操纵植物?
  • 批准号:
    2305880
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: How will climate change influence how endophytes decompose plant litter?
NSF 生物学博士后奖学金:气候变化将如何影响内生菌分解植物凋落物的方式?
  • 批准号:
    2209329
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Fellowship Award
HOW MEGA-DIVERSE ARE ASIAN RAINFORESTS? DEVELOPMENT OF INNOVATIVE AI MODELS TO UNDERSTAND TROPICAL PLANT BIODIVERSITY
亚洲雨林的多样性如何?
  • 批准号:
    2887670
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Studentship
Smart control of crop diseases: how can we best combine fungicides and plant resistance genes?
作物病害智能防治:杀菌剂与植物抗性基因如何最佳结合?
  • 批准号:
    2886359
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Studentship
How Nutrients Shape Plant Roots: A Spatial Analysis of the Signaling Networks that Control Root Responses to Phosphorus
养分如何塑造植物根部:控制根部对磷反应的信号网络的空间分析
  • 批准号:
    2888777
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Studentship
Quantifying how host genotype and microbiome composition combine to influence susceptibility to plant disease.
量化宿主基因型和微生物组组成如何结合影响植物病害的易感性。
  • 批准号:
    BB/W020378/1
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Research Grant
CAREER: How do rhizosphere associated microorganisms and plant host interact to regulate soil microbial processes?
职业:根际相关微生物和植物宿主如何相互作用来调节土壤微生物过程?
  • 批准号:
    2238633
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Continuing Grant
How to build a protein factory? Linking structure and function of the plant endoplasmic reticulum
如何建造蛋白质工厂?
  • 批准号:
    BB/X006417/1
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Research Grant
Uncovering how plant pathogens take control of chloroplast protein import to limit chloroplast-mediated immunity
揭示植物病原体如何控制叶绿体蛋白输入以限制叶绿体介导的免疫
  • 批准号:
    BB/X000192/1
  • 财政年份:
    2023
  • 资助金额:
    $ 67.07万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了