Smart control of crop diseases: how can we best combine fungicides and plant resistance genes?
作物病害智能防治:杀菌剂与植物抗性基因如何最佳结合?
基本信息
- 批准号:2886359
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The fungal pathogen Zymoseptoria tritici (Zt) causes septoria tritici blotch (STB), the most damaging disease of wheat in Europe and one of the largest constraints on wheat production globally. The disease is especially serious in the UK because of conducive climatic conditions. It is becoming increasingly difficult to control STB, because Zt is capable of rapidly evolving resistance to fungicides and adapting to disease-resistant wheat varieties and environmental conditions. No single control measure is durable in the face of the pathogen's notorious adaptive capacity, hence the two key control methods - fungicides and disease resistance genes in wheat - need to be combined in a manner that optimizes not only control efficacy in the short term, but also their sustainability in the longer term. This interdisciplinary project will make a major contribution to this goal using a powerful combination of large-scale field experimentation with novel high-throughput phenotyping techniques, bioinformatic analyses, state-of-the-art machine learning and mathematical modelling.Objective 1: Reveal the novel genetic bases of quantitative STB resistance in wheat. Genetic basis of quantitative resistance to STB remains largely unexplored because of the limitations in the current phenotyping methods: they use insufficiently accurate visual assessments of disease severity, artificial inoculation with limited numbers of pathogen strains, and single measurements during the wheat growing season. The objective will be achieved by characterizing natural STB epidemic development in the field using precision, high-throughput digital phenotyping approaches that we recently developed. The wheat population of choice is the Multiparent Advanced Generation Inter-Cross (MAGIC) population, which combines a high genetic diversity with abundant recombination, representing a powerful resource for identifying new quantitative trait loci (QTL) responsible for disease resistance. New digital phenotyping of disease resistance has not been previously used in conjunction with wheat MAGIC populations.Objective 2: Achieve accurate and robust predictions of STB epidemic development. The predictive models devised in the project will use advanced machine learning approaches to combine large datasets of three types: precision disease measurements, wheat genome data and meteorological data. Genomic data consists of >13,000 single nucleotide polymorphisms (SNPs) segregating in MAGIC population. We will first use conventional QTL mapping techniques to identify the SNPs associated with the traits related to epidemic development/disease resistance. Next, we will use linear machine learning approaches based on penalized linear regression that are capable of combining the three types of data. Furthermore, we will employ more computationally intensive algorithms based on decision-trees capturing nonlinear dependencies. Most powerful predictors will be identified to construct models that provide sufficient accuracy, while minimizing the costs of data acquisition.Objective 3: Optimize the combined use of fungicides and disease resistance genes in wheat. This will be achieved by incorporating the outcomes of Objectives 1 and 2 into the state-of-the-art mathematical modelling framework. We will integrate the knowledge on quantitative disease resistance acquired in Objective 1 with predictive models of STB devised in Objective 2 together with fungicide dose-response datasets into an epidemiological/evolutionary modelling framework. A multi-objective optimization algorithm will be used to optimize choices of fungicide treatment programmes and disease-resistant wheat cultivars over a short term of a single growing season. We will compare them with the outcomes of optimization conducted over a longer term of a number of consecutive growing seasons.
真菌病原菌三孢发酵壳针孢菌(Zymoseptoria triacetum,Zt)引起三孢壳针孢菌斑点病(Septoria triacetum blotch,STB),这是欧洲小麦最具破坏性的病害,也是全球小麦生产的最大限制之一。这种疾病在英国特别严重,因为气候条件有利。由于Zt能够迅速进化对杀菌剂的抗性并适应抗病小麦品种和环境条件,因此控制STB变得越来越困难。面对病原体臭名昭著的适应能力,没有任何单一的控制措施是持久的,因此,两种关键的控制方法-杀真菌剂和小麦抗病基因-需要以一种不仅优化短期控制效果,而且优化其长期可持续性的方式相结合。这个跨学科项目将利用大规模田间试验与新型高通量表型分析技术、生物信息学分析、最先进的机器学习和数学建模的强大组合,为实现这一目标做出重大贡献。目标1:揭示小麦定量STB抗性的新遗传基础。由于目前表型分析方法的局限性,对STB的定量抗性的遗传基础在很大程度上仍未被探索:它们使用对疾病严重程度的不够准确的视觉评估,使用有限数量的病原体菌株进行人工接种,以及在小麦生长季节进行单次测量。这一目标将通过使用我们最近开发的精确、高通量数字表型分析方法表征该领域的自然STB流行病发展来实现。选择的小麦群体是多亲本高级世代互交(MAGIC)群体,其结合了高遗传多样性和丰富的重组,代表了用于鉴定负责抗病性的新的数量性状基因座(QTL)的强大资源。新的抗病性的数字表型以前没有与小麦MAGIC群体一起使用。目标2:实现STB流行发展的准确和可靠的预测。该项目设计的预测模型将使用先进的机器学习方法来结合联合收割机三种类型的大型数据集:精确的疾病测量,小麦基因组数据和气象数据。基因组数据由MAGIC群体中分离的> 13,000个单核苷酸多态性(SNP)组成。我们将首先使用传统的QTL定位技术来确定与流行发展/抗病性相关的性状相关的SNPs。接下来,我们将使用基于惩罚线性回归的线性机器学习方法,这些方法能够结合这三种类型的数据。此外,我们将采用更多的计算密集型算法的基础上捕获非线性依赖的决策树。最强大的预测因子将被确定,以构建模型,提供足够的准确性,同时最大限度地减少成本的数据acquisition.Objective 3:优化组合使用杀菌剂和抗病基因在小麦。这将通过将目标1和2的成果纳入最先进的数学建模框架来实现。我们将整合目标1中获得的定量抗病性知识与目标2中设计的STB预测模型以及杀真菌剂剂量-反应数据集到流行病学/进化建模框架中。一个多目标优化算法将用于优化杀菌剂处理方案和抗病小麦品种在一个单一的生长季节的短期内的选择。我们将比较他们的优化结果进行了较长时间的连续生长季节的数量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
- 批准号:22302168
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
Lagrange网络实用同步的不连续控制研究
- 批准号:61603174
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
- 批准号:81172643
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
- 批准号:81070069
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
- 批准号:10972233
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
- 批准号:30900646
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
相似海外基金
Control of crop-microbe symbiosis by new plant hormones
新型植物激素控制作物-微生物共生
- 批准号:
DP240102441 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Novel attract and kill strategies for control of UK fruit crop pests: PROBANDZ
控制英国水果作物害虫的新颖吸引和杀死策略:PROBANDZ
- 批准号:
10093816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Advanced Artificial Intelligence to Improve Crop Quality Control & Reduce Crop Waste
先进的人工智能改善作物质量控制
- 批准号:
10067683 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
ACDC: Advanced Crop Dynamic Control for sustainable leaf protein production in vertical farms
ACDC:用于垂直农场可持续叶蛋白生产的先进作物动态控制
- 批准号:
10076948 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
New crop on the block: The genetic control of hempseed nutritional quality
新作物上市:大麻籽营养品质的遗传控制
- 批准号:
LP210200606 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Linkage Projects
Measuring the spillover effects of pest control ecosystem services from non-crop vegetation
衡量非农作物植被害虫防治生态系统服务的溢出效应
- 批准号:
575378-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Smart control of crop diseases: how can we best combine fungicides and plant resistance genes?
作物病害智能防治:杀菌剂与植物抗性基因如何最佳结合?
- 批准号:
2603110 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Autonomous monitoring and control of crop growth as a feedback system
作为反馈系统对作物生长进行自主监测和控制
- 批准号:
2458400 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Discovering hidden control elements for crop improvement
发现作物改良的隐藏控制因素
- 批准号:
DE200101748 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Experiment with a new wood vinegar obtained from pyrolysis of agricultural residues for weed control in crop cultures
利用从农业残留物热解中获得的新型木醋来控制作物栽培中的杂草进行实验
- 批准号:
538622-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Applied Research and Development Grants - Level 1