Spectral circuits for figure-ground segmentation in motion vision
运动视觉中图形-背景分割的光谱电路
基本信息
- 批准号:BB/W013509/1
- 负责人:
- 金额:$ 96.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
We will elucidate the role of "colour" information in supporting motion vision. These two fundamental abilities of eyes are usually considered in isolation. However, both from basic physics of how light travels in the water, and from looking at the evolution of vision, the two must be fundamentally entwined.Background. Vision evolved first in the water. First came light sensitivity, enabled by the evolution of opsins some 800 million years ago. Soon after probably came a rudimentary sense of "colour vision", enabled by the diversification of opsins into variants that were sensitive to different wavelengths ("colours") of light. Primitive animals likely would have been able to use this newfound sense to tell the "colour" of their surroundings, albeit without knowing its spatial structure - after all, image forming vision, requiring ordered arrays of photoreceptors, screening pigment and eye optics had not yet evolved. Nevertheless, even without knowledge of space, colour alone can be useful. For example, it can inform about water depth: Light from the sun penetrates water in a "colour-dependent" manner: Blue and UV light is rapidly lost, while green and red light penetrates much deeper. Accordingly, if the environment is blue/UV-rich, chances are you are near the surface.It would take another ~250 or so million years before early "colour-vision" systems would evolve into full-flown eyes. This critical step probably happened some 540 million years ago during the Cambrian explosion, when a newly found sense of "image forming vision" is thought to have centrally enabled the emergence of neurally complex animal life as we know it today. Suddenly, animals could use their eyes to navigate their surroundings much more efficiently, stabilise their bodies, and visually spot potential prey and predators. These newfound abilities were made possible by new neural circuits within the eyes and brains of our early ancestors that computed complex types of information in the visual scene. Perhaps most critical of all was the ability to sense motion. Motion of the background would tell animals how they themselves were moving through the environment, while motion of the foreground would highlight potential nearby objects to interact with. Animals must be able to be able to tell the two apart. This is generally thought to be achieved by relatively complex and far from understood circuits of the retina and brain that constantly compare brightness changes over time across different parts of visual space. However, looking back at how our very earliest ancestors might have told water depth simply based on the "colour" of their surroundings, the very same principle of basic physics should serve equally well to tell the distance of objects in the water. In other words, the "colour" of an object alone should tell animals if it is near, or far. What is more, since "colour" vision almost certainly predates motion vision, circuits enabling the latter would have necessarily had to evolve on top of pre-existing colour circuits. It would then be very surprising indeed if colour information were not fundamentally inbuilt into circuits that extract visual motion, including in animals that are alive today. Objectives. We will work on the experimentally amenable larval zebrafish which allow unrestricted optical access to any part of the eyes and brains in the live animal, and which inhabit shallow freshwaters not too dissimilar from the world where vision first evolved. We will combine videography data from the field, behavioural observations, genetic manipulations of retinal circuits, and state-of-the-art neurophysiological recordings of 1,000s of individual nerve cells at a time to ask if and how zebrafish use colour information for motion vision.Impact. Understanding the true evolutionary origins and possible interplay of colour and motion vision systems will inform how "vision" works in a very general sense, including in our own eyes.
我们将阐明“颜色”信息在支持运动视觉中的作用。眼睛的这两种基本能力通常被孤立地考虑。然而,无论是从光在水中传播的基本物理学来看,还是从视觉的进化来看,两者都必须从根本上纠缠在一起。背景。视觉首先在水中进化。首先是光敏感性,这是由大约8亿年前视蛋白的进化所实现的。不久之后,可能出现了一种基本的“色觉”,这是由于视蛋白的多样化,使其成为对不同波长(“颜色”)光敏感的变体。原始动物可能已经能够使用这种新发现的感觉来分辨周围环境的“颜色”,尽管不知道其空间结构-毕竟,成像视觉,需要有序的感光器阵列,筛选色素和眼睛光学尚未进化。尽管如此,即使没有空间知识,颜色本身也是有用的。例如,它可以告知水深:来自太阳的光以“颜色依赖”的方式穿透水:蓝色和紫外线迅速消失,而绿色和红色光穿透得更深。因此,如果环境富含蓝色/紫外线,你就有可能接近地表。在早期的“色觉”系统进化成完整的眼睛之前,还需要大约2.5亿年的时间。这一关键步骤可能发生在大约5.4亿年前的寒武纪大爆发期间,当时一种新发现的“图像形成视觉”被认为是我们今天所知的神经复杂动物生命出现的中心原因。突然之间,动物们可以用眼睛更有效地导航周围环境,稳定身体,并在视觉上发现潜在的猎物和捕食者。这些新发现的能力是通过我们早期祖先的眼睛和大脑中的新神经回路来实现的,这些神经回路计算视觉场景中的复杂信息。也许最关键的是感知运动的能力。背景的运动会告诉动物它们自己是如何在环境中移动的,而前景的运动会突出显示附近的潜在物体。动物必须能够区分两者。这通常被认为是通过相对复杂且远未被理解的视网膜和大脑回路来实现的,这些回路不断地比较视觉空间不同部分随时间的亮度变化。然而,回顾一下我们最早的祖先是如何仅仅根据周围环境的“颜色”来判断水深的,同样的基本物理学原理也应该同样适用于判断水中物体的距离。换句话说,物体的“颜色”本身就可以告诉动物它是近还是远。更重要的是,由于“颜色”视觉几乎肯定早于运动视觉,使后者能够实现的电路必须在预先存在的颜色电路之上进化。如果颜色信息没有从根本上嵌入到提取视觉运动的电路中,那将是非常令人惊讶的,包括今天活着的动物。目标.我们将致力于实验可行的幼斑马鱼,允许不受限制的光学访问的任何部分的眼睛和大脑在活的动物,并居住在浅水淡水没有太大的不同世界的视觉第一次进化。我们将结合来自该领域的联合收割机视频数据,行为观察,视网膜回路的遗传操作,以及最先进的神经生理学记录,一次记录1,000个单个神经细胞,以询问斑马鱼是否以及如何使用颜色信息进行运动视觉。了解颜色和运动视觉系统的真正进化起源和可能的相互作用将告知“视觉”如何在非常普遍的意义上工作,包括在我们自己的眼睛中。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina.
无长突细胞差异性地平衡斑马鱼中央和周边视网膜的颜色回路。
- DOI:10.1016/j.celrep.2023.112055
- 发表时间:2023
- 期刊:
- 影响因子:8.8
- 作者:Wang X
- 通讯作者:Wang X
Birds multiplex spectral and temporal visual information via retinal On- and Off-channels.
- DOI:10.1038/s41467-023-41032-z
- 发表时间:2023-08-31
- 期刊:
- 影响因子:16.6
- 作者:Seifert, Marvin;Roberts, Paul A.;Kafetzis, George;Osorio, Daniel;Baden, Tom
- 通讯作者:Baden, Tom
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Baden其他文献
Comparative transcriptomic insights into the evolution of vertebrate photoreceptor types
对脊椎动物光感受器类型进化的比较转录组学见解
- DOI:
10.1016/j.cub.2025.03.060 - 发表时间:
2025-05-19 - 期刊:
- 影响因子:7.500
- 作者:
Dario Tommasini;Takeshi Yoshimatsu;Teresa Puthussery;Tom Baden;Karthik Shekhar - 通讯作者:
Karthik Shekhar
Die Retina im Rausch der Kanäle
视网膜在视觉上的劳什
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
K. Franke;Philipp Berens;T. Schubert;M. Bethge;Thomas Euler;Tom Baden - 通讯作者:
Tom Baden
Correction: From water to land: Evolution of photoreceptor circuits for vision in air
修正:从水到陆地:空气中视觉感光电路的进化
- DOI:
10.1371/journal.pbio.3002588 - 发表时间:
2024 - 期刊:
- 影响因子:9.8
- 作者:
Tom Baden - 通讯作者:
Tom Baden
Species-specific motion detectors
特定物种运动探测器
- DOI:
10.1038/nature18454 - 发表时间:
2016-06-22 - 期刊:
- 影响因子:48.500
- 作者:
Thomas Euler;Tom Baden - 通讯作者:
Tom Baden
A low-cost hyperspectral scanner for natural imaging and the study of animal colour vision above and under water
用于自然成像和水下动物色觉研究的低成本高光谱扫描仪
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:4.6
- 作者:
N. Nevala;Tom Baden;Tom Baden - 通讯作者:
Tom Baden
Tom Baden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tom Baden', 18)}}的其他基金
Seeing red: The retinal basis for temporal and motion vision in birds
看到红色:鸟类时间视觉和运动视觉的视网膜基础
- 批准号:
BB/X020053/1 - 财政年份:2023
- 资助金额:
$ 96.9万 - 项目类别:
Research Grant
Anisotropic retinal circuits for processing of colour and space in nature
用于处理自然界中的颜色和空间的各向异性视网膜电路
- 批准号:
BB/R014817/1 - 财政年份:2018
- 资助金额:
$ 96.9万 - 项目类别:
Research Grant
相似海外基金
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Discovery Early Career Researcher Award
Silencing the noise in quantum circuits by a Quantum fluid Bath - SQuBa
通过量子流体浴消除量子电路中的噪声 - SQuBa
- 批准号:
EP/Y022289/1 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Research Grant
Mechanisms of Motivation: The Role of Cortical-Basal Ganglia-Dopamine Circuits in Reward Pursuit and Apathy
动机机制:皮质-基底神经节-多巴胺回路在奖励追求和冷漠中的作用
- 批准号:
MR/X022080/1 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Research Grant
Functional implications of focal white matter lesions on neuronal circuits
局灶性白质病变对神经元回路的功能影响
- 批准号:
MR/Y014537/1 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Research Grant
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Research Grant
CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
- 批准号:
2338730 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Standard Grant
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Understanding and engineering DNA supercoiling-mediated feedback in gene circuits
职业:理解和改造基因回路中 DNA 超螺旋介导的反馈
- 批准号:
2339986 - 财政年份:2024
- 资助金额:
$ 96.9万 - 项目类别:
Continuing Grant