Role of the chloroplast ubiquitin E3 ligase SP1 in abiotic stress tolerance in plants
叶绿体泛素 E3 连接酶 SP1 在植物非生物胁迫耐受中的作用
基本信息
- 批准号:BB/N006372/1
- 负责人:
- 金额:$ 62.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the human population growing rapidly and set to reach 9 billion by 2050, and because of ever increasing pressure on natural resources, the drivers for increased crop yields and for resilience to climate change and sub-optimal growing conditions are stronger than ever. To meet these demands it will be essential to develop improved crop varieties. Through research on the model plant thale cress (Arabidopsis thaliana), we recently made a significant breakthrough that may have important implications for food security: We discovered a gene called SP1 that controls important aspects of plant growth, and found it to be important in plant responses to adverse environmental conditions such as water stress and high salinity (collectively, abiotic stresses). By modifying SP1 expression, thale cress plants can be made more tolerant of such stresses. In this project, we will study the SP1 gene to elucidate how it is involved in stress responses, and investigate its potential use for crop improvement by conducting studies in wheat.The SP1 gene regulates the development of structures inside plant cells called chloroplasts. Chloroplasts are normal cellular constituents (i.e., they are organelles), and in many ways they define plants. They contain the green pigment chlorophyll and are responsible for photosynthesis - the vital process that captures sunlight energy and uses it to power the activities of the cell, for example by converting carbon dioxide from the air into sugars. As photosynthesis is the only significant mechanism of energy-input into the living world, chloroplasts are of huge importance, not just to plants but to all life on Earth. But photosynthesis also has the potential to generate toxic "reactive oxygen species" (ROS), particularly when conditions are challenging, and so chloroplasts have a critical role in stress responses too.Although chloroplasts do contain DNA (a relic of their evolutionary origins as free-living photosynthetic bacteria) and so can make some of their own proteins, most of the thousands of different proteins needed to form a chloroplast are encoded by genes in the cell nucleus. These nucleus-encoded proteins are made outside of the chloroplast in the cellular matrix known as the cytosol. As chloroplasts are each surrounded by a double membrane envelope, they have evolved sophisticated protein import machinery that drives the uptake of proteins from the cytosol. This machinery comprises two molecular machines: one in the outer envelope membrane called TOC (an abbreviation of "Translocon at the outer membrane of chloroplasts") and another in the inner membrane called TIC. Each machine is composed of several different proteins that cooperate during import.The SP1 gene encodes a type of regulatory factor called a "ubiquitin E3 ligase". Such regulators work by labelling-up unwanted proteins to target them for removal. The SP1 E3 ligase specifically acts on components of the TOC machinery, thereby controlling TOC composition and function so that only the desired proteins are imported. Such control is important when chloroplasts must undergo major functional changes, for example during adaptation to stress. We believe that SP1 acts during stress to limit the import of new components of the photosynthetic apparatus, in order to attenuate photosynthetic activity and so mitigate the negative effects of stress. By limiting photosynthesis during stress, SP1 reduces the potential for ROS overproduction such that plants are less likely to suffer serious or fatal stress-related damage.Knowledge gained during this project will improve our understanding of plant responses to adverse environments, and may enable improved resilience of crops to such conditions. Drought and salinity are among the most significant factors affecting crop yields, with annual global crop losses due to drought alone estimated at $10bn. We believe that our work with SP1 may help to alleviate such losses.
随着人口迅速增长,到2050年将达到90亿,而且由于自然资源面临的压力不断增加,提高作物产量和抵御气候变化和次优生长条件的驱动力比以往任何时候都更强大。为了满足这些需求,必须开发改良的作物品种。通过对模式植物塔勒水芹(Arabidopsis thaliana)的研究,我们最近取得了一项可能对粮食安全具有重要意义的重大突破:我们发现了一个名为SP1的基因,它控制着植物生长的重要方面,并发现它在植物应对水分胁迫和高盐度等不利环境条件(统称为非生物胁迫)方面很重要。通过修饰SP1的表达,可以使塔勒水芹植物对这种胁迫更耐受。本课题研究SP1基因,通过对小麦的研究,阐明SP1基因与逆境反应的关系,并探讨其在作物改良中的潜在用途。SP1基因调节植物细胞内称为叶绿体的结构的发育。叶绿体是正常的细胞成分(即,它们是细胞器),在许多方面它们定义了植物。它们含有绿色色素叶绿素,负责光合作用--这是一个捕捉阳光能量并利用它为细胞活动提供动力的重要过程,例如通过将空气中的二氧化碳转化为糖。由于光合作用是能量输入到生命世界的唯一重要机制,叶绿体不仅对植物而且对地球上的所有生命都非常重要。但光合作用也有可能产生有毒的“活性氧”(ROS),特别是在条件具有挑战性的情况下,因此叶绿体在应激反应中也起着关键作用。(这是它们作为自由生活的光合细菌进化起源的遗迹),因此可以制造一些自己的蛋白质,形成叶绿体所需的数千种不同蛋白质中的大多数由细胞核中的基因编码。这些核编码的蛋白质是在叶绿体外的细胞基质(称为细胞质)中产生的。由于每个叶绿体都被双层膜包围,它们已经进化出复杂的蛋白质输入机制,驱动从细胞质中摄取蛋白质。这种机器包括两个分子机器:一个在被称为TOC(“叶绿体外膜处的易位子”的缩写)的外膜中,另一个在被称为TIC的内膜中。每个机器都由几种不同的蛋白质组成,在输入过程中相互配合。SP1基因编码一种称为“泛素E3连接酶”的调节因子。这些调节器通过标记不需要的蛋白质来清除它们。SP1 E3连接酶特异性地作用于TOC机制的组分,从而控制TOC组成和功能,使得仅输入所需的蛋白质。当叶绿体必须经历重大的功能变化时,例如在适应胁迫期间,这种控制是重要的。我们认为,SP1的行为在胁迫期间,以限制进口的光合机构的新组件,以减弱光合活性,从而减轻压力的负面影响。通过限制胁迫期间的光合作用,SP1降低了ROS过度产生的可能性,使植物不太可能遭受严重或致命的胁迫相关损害。在这个项目中获得的知识将提高我们对植物对不利环境的反应的理解,并可能提高作物对这种条件的适应性。干旱和盐碱化是影响作物产量的最重要因素之一,每年仅干旱造成的全球作物损失估计就达100亿美元。我们认为,我们与SP1的合作可能有助于减轻此类损失。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato
- DOI:10.1038/s41477-021-00916-y
- 发表时间:2021-05-01
- 期刊:
- 影响因子:18
- 作者:Ling, Qihua;Sadali, Najiah Mohd;Jarvis, R. Paul
- 通讯作者:Jarvis, R. Paul
Analysis of Protein Import into Chloroplasts Isolated from Stressed Plants
- DOI:10.3791/54717
- 发表时间:2016-11-01
- 期刊:
- 影响因子:1.2
- 作者:Ling, Qihua;Jarvis, Paul
- 通讯作者:Jarvis, Paul
Mutations in the chloroplast inner envelope protein TIC100 impair and repair chloroplast protein import and impact retrograde signaling.
- DOI:10.1093/plcell/koac153
- 发表时间:2022-07-30
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Publisher Correction: The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato.
出版商更正:叶绿体相关蛋白降解途径控制番茄有色体发育和果实成熟。
- DOI:10.1038/s41477-021-01018-5
- 发表时间:2021
- 期刊:
- 影响因子:18
- 作者:Ling Q
- 通讯作者:Ling Q
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Jarvis其他文献
Nursing and midwifery students' perceptions of spirituality, spiritual care, and spiritual care competency: A prospective, longitudinal, correlational European study
- DOI:
10.1016/j.nedt.2018.05.002 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Linda Ross;Wilfred McSherry;Tove Giske;René van Leeuwen;Annemiek Schep-Akkerman;Tiburtius Koslander;Jenny Hall;Vibeke Østergaard Steenfeldt;Paul Jarvis - 通讯作者:
Paul Jarvis
Intracerebral Hemorrhage in a Young Urban Population: Etiologies and Outcomes in Patients 50 and Younger
- DOI:
10.1016/j.jstrokecerebrovasdis.2019.07.011 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Aron Gedansky;Paul Jarvis;Daohai Yu;Xiaoning Lu;Terry Heiman-Patterson;Guillermo Linares - 通讯作者:
Guillermo Linares
Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana
- DOI:
10.1007/bf00023565 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:3.800
- 作者:
Paul Jarvis;Clare Lister;Veronique Szabo;Caroline Dean - 通讯作者:
Caroline Dean
The Arabidopsis Book(control of plastid development, protein import, division and inheritance.)
拟南芥书(质体发育、蛋白质输入、分裂和遗传的控制。)
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Wataru Sakamoto;Shin-ya Miyagishima;Paul Jarvis - 通讯作者:
Paul Jarvis
Biogenesis and homeostasis of chloroplasts and other plastids
叶绿体和其他质体的生物发生与内稳态
- DOI:
10.1038/nrm3702 - 发表时间:
2013-11-22 - 期刊:
- 影响因子:90.200
- 作者:
Paul Jarvis;Enrique López-Juez - 通讯作者:
Enrique López-Juez
Paul Jarvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Jarvis', 18)}}的其他基金
Defining the role of SUMO in regulating chloroplast biogenesis and functions
定义 SUMO 在调节叶绿体生物发生和功能中的作用
- 批准号:
BB/W015021/1 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Uncovering how plant pathogens take control of chloroplast protein import to limit chloroplast-mediated immunity
揭示植物病原体如何控制叶绿体蛋白输入以限制叶绿体介导的免疫
- 批准号:
BB/X000192/1 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Defining the scope and components of ubiquitin-dependent chloroplast-associated protein degradation
定义泛素依赖性叶绿体相关蛋白降解的范围和组成部分
- 批准号:
BB/V007300/1 - 财政年份:2021
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Application of the plastidic E3 ligase SP1 in crop improvement, using tomato and rice as models
质体E3连接酶SP1在作物改良中的应用(以番茄和水稻为模型)
- 批准号:
BB/R005591/1 - 财政年份:2018
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Elucidating the role of SP2 and the SP1-SP2 machinery in chloroplast protein degradation
阐明 SP2 和 SP1-SP2 机制在叶绿体蛋白质降解中的作用
- 批准号:
BB/R016984/1 - 财政年份:2018
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Chloroplast-Associated Degradation (CHLORAD): Molecular definition of a ubiquitin-dependent system for plastid protein removal in plants
叶绿体相关降解 (CHLORAD):植物中质体蛋白去除泛素依赖性系统的分子定义
- 批准号:
BB/R009333/1 - 财政年份:2018
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Investigating the function of a ClpC/Hsp100-type chaperone in chloroplast preprotein import
研究 ClpC/Hsp100 型伴侣在叶绿体前蛋白输入中的功能
- 批准号:
BB/J017256/2 - 财政年份:2013
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Investigating the roles of Arabidopsis STIC1 and STIC2 in chloroplast protein transport
研究拟南芥 STIC1 和 STIC2 在叶绿体蛋白转运中的作用
- 批准号:
BB/J009369/2 - 财政年份:2013
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Control of plastid biogenesis by the ubiquitin-proteasome system
泛素-蛋白酶体系统对质体生物发生的控制
- 批准号:
BB/K018442/1 - 财政年份:2013
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Investigating the roles of Arabidopsis STIC1 and STIC2 in chloroplast protein transport
研究拟南芥 STIC1 和 STIC2 在叶绿体蛋白转运中的作用
- 批准号:
BB/J009369/1 - 财政年份:2012
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
相似国自然基金
PDM3及互作蛋白调控叶绿体发育的机理研究
- 批准号:31970653
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
CIA1 (Chloroplast Import Apparatus 1)调控拟南芥营养生长阶段转变的分子机理
- 批准号:31300997
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the molecular basis of chloroplast transcription of photosynthetic genes
定义光合基因叶绿体转录的分子基础
- 批准号:
BB/Y003802/1 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
A powerful directed-evolution tool for exploitation of chloroplast engineering biology
用于叶绿体工程生物学开发的强大定向进化工具
- 批准号:
BB/Y008162/1 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Molecular architecture and mechanism of the chloroplast's beta-barrel assembly machinery (ChlAM)
叶绿体β-桶组装机器(ChlAM)的分子结构和机制
- 批准号:
EP/Y036158/1 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Structure and function of the chloroplast transcription machinery
叶绿体转录机制的结构和功能
- 批准号:
MR/X033481/1 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Fellowship
A study on division of photosynthetic metabolism associated with the uneven distribution of Rubisco and starch in the chloroplast stromal space
叶绿体基质空间中Rubisco和淀粉分布不均与光合代谢划分的研究
- 批准号:
23H02195 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular analysis of nuclear factors governing the morphology and segregation chloroplast DNA
控制叶绿体 DNA 形态和分离的核因素的分子分析
- 批准号:
23H02509 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation on a transcriptional and post-transcriptional regulation mechanism of the diurnal expression rhythm of chloroplast genes.
阐明叶绿体基因昼夜表达节律的转录和转录后调控机制。
- 批准号:
23K05146 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rotation 1: Validation of a putative MYB transcription factor involved in chloroplast development
第 1 轮:验证参与叶绿体发育的推定 MYB 转录因子
- 批准号:
2887717 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Studentship
Conference: 2023 Chloroplast Biotechnology GRC & GRS: Harnessing the SynBio Revolution for Metabolic Engineering and Enhanced Photosynthesis
会议:2023年叶绿体生物技术GRC
- 批准号:
2243932 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Standard Grant
RII Track-4:NSF:Chloroplast retrograde signaling during plant immunity: integrating signal transduction and cellular dynamics
RII Track-4:NSF:植物免疫过程中叶绿体逆行信号传导:整合信号转导和细胞动力学
- 批准号:
2329266 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Standard Grant