CONFORMATIONAL ANALYSIS BY ENERGY EMBEDDING

通过能量嵌入进行构象分析

基本信息

  • 批准号:
    3292165
  • 负责人:
  • 金额:
    $ 9.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1985
  • 资助国家:
    美国
  • 起止时间:
    1985-11-01 至 1993-07-31
  • 项目状态:
    已结题

项目摘要

Most molecules are free to assume a variety of conformations by rotating about single bonds, and which conformations they prefer can have a great influence on their properties. For example, enzymes are active as catalysts and subject to biochemical controls on their activity when the polypeptide chain is correctly folded in space (the native state) and inactive when incorrectly folded. Conformational analysis has been very successful in treating molecules with few degrees of freedom by approximating the free energy as a function of conformation, and then locating regions of conformation space having relatively low energy. For molecules as large or larger than small peptide hormones, however, there are an astronomical number of local energy minima scattered throughout a conformation space of very high dimensionality, and only a vanishingly small fraction of these have low enough energy to be physically significant. A thorough search would require an amount of computer time that increases exponentially with the size of the molecule such that a decapeptide is well beyond the reach of any foreseeable computers. It does us little good to sequence the entire genome of a virus (or eventually the human genome) if we are unable to predict the folding of the corresponding proteins and hence their function. Similarly genetic engineering needs to know what alterations will improve a protein's properties, such as increasing its thermal stability or changing an enzyme's specificity. Energy embedding is a technique we have pioneered for sidestepping this problem entirely by treating the molecule in the computer as if it existed in many more than three dimensions. Our long term goal is to apply energy embedding to the prediction of the low-resolution global folding of proteins. We are learning that successful predictions are guided entirely by a potential function that may have numerous local minima, but must prefer the native conformation in a global sense. Thus developing a suitable potential is our top priority, and we have invented a systematic method for carrying this out, based on linear programming. Since most tests of molecular mechanics potential functions examine their properties only in the neighborhood of experimentally determined conformations energy embedding Is a unique tool for validating their global character. Therefore another short term goal is to examine their properties only in the neighborhood of experimentally determined conformations, energy embedding is a unique tool for validating their global character. Therefore another short term goal is to examine the global predictive ability of standard potential functions, such as AMBER and MM2, on small molecules. A third immediate task is to vectorize our computer programs in order to make larger molecules feasible subjects of study.
大多数分子可以自由地形成各种不同的构象

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GORDON M CRIPPEN其他文献

GORDON M CRIPPEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GORDON M CRIPPEN', 18)}}的其他基金

STATISTICAL MECHANICS OF PROTEIN FOLDING
蛋白质折叠的统计力学
  • 批准号:
    6386419
  • 财政年份:
    1999
  • 资助金额:
    $ 9.72万
  • 项目类别:
STATISTICAL MECHANICS OF PROTEIN FOLDING
蛋白质折叠的统计力学
  • 批准号:
    2822777
  • 财政年份:
    1999
  • 资助金额:
    $ 9.72万
  • 项目类别:
STATISTICAL MECHANICS OF PROTEIN FOLDING
蛋白质折叠的统计力学
  • 批准号:
    6181415
  • 财政年份:
    1999
  • 资助金额:
    $ 9.72万
  • 项目类别:
VORONOI MAPPING OF COCAINE RECEPTORS
可卡因受体的 VORONOI 作图
  • 批准号:
    2119045
  • 财政年份:
    1990
  • 资助金额:
    $ 9.72万
  • 项目类别:
VORONOI MAPPING OF COCAINE RECEPTORS
可卡因受体的 VORONOI 作图
  • 批准号:
    3213442
  • 财政年份:
    1990
  • 资助金额:
    $ 9.72万
  • 项目类别:
VORONOI MAPPING OF COCAINE RECEPTORS
可卡因受体的 VORONOI 作图
  • 批准号:
    3213440
  • 财政年份:
    1990
  • 资助金额:
    $ 9.72万
  • 项目类别:
CONFORMATIONAL ANALYSIS BY ENERGY EMBEDDING
通过能量嵌入进行构象分析
  • 批准号:
    3292167
  • 财政年份:
    1985
  • 资助金额:
    $ 9.72万
  • 项目类别:
CONFORMATIONAL ANALYSIS BY ENERGY EMBEDDING
通过能量嵌入进行构象分析
  • 批准号:
    3292163
  • 财政年份:
    1985
  • 资助金额:
    $ 9.72万
  • 项目类别:
CONFORMATIONAL ANALYSIS BY ENERGY EMBEDDING
通过能量嵌入进行构象分析
  • 批准号:
    3278347
  • 财政年份:
    1985
  • 资助金额:
    $ 9.72万
  • 项目类别:
CONFORMATIONAL ANALYSIS BY ENERGY EMBEDDING
通过能量嵌入进行构象分析
  • 批准号:
    3292166
  • 财政年份:
    1985
  • 资助金额:
    $ 9.72万
  • 项目类别:

相似海外基金

A Hierarchy of Fragment-based Quantum Chemical Models Incorporating Machine Learning for Applications in Nanoscale Systems
基于片段的量子化学模型的层次结构结合了机器学习在纳米级系统中的应用
  • 批准号:
    2102583
  • 财政年份:
    2021
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
A hierarchy of composite quantum chemical models for applications in materials chemistry and nanoscience
用于材料化学和纳米科学应用的复合量子化学模型的层次结构
  • 批准号:
    1665427
  • 财政年份:
    2017
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Continuing Grant
A hierarchy of composite quantum chemical models for applications in materials and surface Chemistry
用于材料和表面化学应用的复合量子化学模型的层次结构
  • 批准号:
    1266154
  • 财政年份:
    2013
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Continuing Grant
Physical and chemical models for ignition processes
点火过程的物理和化学模型
  • 批准号:
    184095471
  • 财政年份:
    2010
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Research Units
Chemical Models of Protein beta-Sheet Interactions
蛋白质 β-折叠相互作用的化学模型
  • 批准号:
    7847773
  • 财政年份:
    2009
  • 资助金额:
    $ 9.72万
  • 项目类别:
Synthetic Chemical Models of Ammonium Arene Interactions
芳烃铵相互作用的合成化学模型
  • 批准号:
    0739207
  • 财政年份:
    2006
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
CAREER: Functional Chemical Models of Complex Biochemical Networks
职业:复杂生化网络的功能化学模型
  • 批准号:
    0349034
  • 财政年份:
    2004
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Continuing Grant
Synthetic Chemical Models of Ammonium Arene Interactions
芳烃铵相互作用的合成化学模型
  • 批准号:
    0415586
  • 财政年份:
    2004
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Kinetics of Key Radical Reactions for Use in Chemical Models of Chlorinated Hydrocarbon Combustion
氯化烃燃烧化学模型中关键自由基反应的动力学
  • 批准号:
    0105239
  • 财政年份:
    2001
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Geometrical Dynamics of Excitation in Heart Muscle and Chemical Models
心肌和化学模型中激发的几何动力学
  • 批准号:
    9974334
  • 财政年份:
    2000
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了