CONFORMATIONAL ANALYSIS BY ENERGY EMBEDDING
通过能量嵌入进行构象分析
基本信息
- 批准号:3292166
- 负责人:
- 金额:$ 9.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1985
- 资助国家:美国
- 起止时间:1985-11-01 至 1993-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most molecules are free to assume a variety of conformations by
rotating about single bonds, and which conformations they prefer
can have a great influence on their properties. For example,
enzymes are active as catalysts and subject to biochemical controls
on their activity when the polypeptide chain is correctly folded
in space (the native state) and inactive when incorrectly folded.
Conformational analysis has been very successful in treating
molecules with few degrees of freedom by approximating the free
energy as a function of conformation, and then locating regions of
conformation space having relatively low energy. For molecules as
large or larger than small peptide hormones, however, there are an
astronomical number of local energy minima scattered throughout a
conformation space of very high dimensionality, and only a
vanishingly small fraction of these have low enough energy to be
physically significant. A thorough search would require an amount
of computer time that increases exponentially with the size of the
molecule such that a decapeptide is well beyond the reach of any
foreseeable computers. It does us little good to sequence the
entire genome of a virus (or eventually the human genome) if we are
unable to predict the folding of the corresponding proteins and
hence their function. Similarly genetic engineering needs to know
what alterations will improve a protein's properties, such as
increasing its thermal stability or changing an enzyme's
specificity. Energy embedding is a technique we have pioneered for
sidestepping this problem entirely by treating the molecule in the
computer as if it existed in many more than three dimensions. Our
long term goal is to apply energy embedding to the prediction of
the low-resolution global folding of proteins. We are learning
that successful predictions are guided entirely by a potential
function that may have numerous local minima, but must prefer the
native conformation in a global sense. Thus developing a suitable
potential is our top priority, and we have invented a systematic
method for carrying this out, based on linear programming. Since
most tests of molecular mechanics potential functions examine their
properties only in the neighborhood of experimentally determined
conformations energy embedding Is a unique tool for validating
their global character. Therefore another short term goal is to
examine their properties only in the neighborhood of
experimentally determined conformations, energy embedding is a
unique tool for validating their global character. Therefore
another short term goal is to examine the global predictive ability
of standard potential functions, such as AMBER and MM2, on small
molecules. A third immediate task is to vectorize our computer
programs in order to make larger molecules feasible subjects of
study.
大多数分子可以自由地呈现各种构象,
围绕单键旋转,以及它们喜欢哪种构象
会对它们的性能产生很大的影响。 比如说,
酶作为催化剂是有活性的,并受生物化学控制
当多肽链正确折叠时,
在空间中(自然状态),并且在不正确折叠时不活动。
构象分析已经非常成功地治疗了
分子与几个自由度,通过近似的自由
能量作为构象的函数,然后定位
构象空间具有相对低的能量。 对于分子,
大或大于小肽激素,然而,
天文数字的局部能量极小值分散在整个
非常高维的构象空间,只有一个
其中极小的一部分具有足够低的能量
物理意义。 彻底搜查需要
的计算机时间,以指数方式增加的大小,
分子,使得十肽远远超出任何
可预见的计算机 对我们来说,
病毒的整个基因组(或最终人类基因组),如果我们是
无法预测相应蛋白质的折叠,
因此也是其职能。 同样地,基因工程需要知道
什么样的改变会改善蛋白质的特性,例如
增加其热稳定性或改变酶的
的特异性能量嵌入是我们开创的一项技术
完全避开了这个问题,
计算机就好像它存在于三维空间之外。 我们
长期目标是将能量嵌入应用于预测
蛋白质的低分辨率全局折叠。 我们正在学习
成功的预测完全是由一个潜在的
函数可能有许多局部最小值,但必须首选
整体意义上的天然构象。从而开发出一种合适的
潜力是我们的首要任务,我们已经发明了一个系统的
实现这一点的方法,基于线性规划。 以来
大多数分子力学势函数的测试都是考察它们的
只有在实验确定的附近的属性
构象能量嵌入是一种独特的工具,
其全球性特征。 另一个短期目标是
只在附近检查它们的属性
实验确定的构象,能量嵌入是一个
这是一个独特的工具来验证他们的全球性。 因此
另一个短期目标是检验全球预测能力,
标准势函数,如AMBER和MM2,在小
分子。 第三个紧迫的任务是矢量化我们的计算机
计划,以使更大的分子可行的主题,
study.
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling the benzodiazepine receptor binding site by the general three-dimensional structure-directed quantitative structure-activity relationship method REMOTEDISC.
通过通用三维结构导向的定量构效关系方法 REMOTEDISC 对苯二氮卓受体结合位点进行建模。
- DOI:
- 发表时间:1990
- 期刊:
- 影响因子:3.6
- 作者:Ghose,AK;Crippen,GM
- 通讯作者:Crippen,GM
Analysis of the in vitro antiviral activity of certain ribonucleosides against parainfluenza virus using a novel computer aided receptor modeling procedure.
使用新型计算机辅助受体建模程序分析某些核糖核苷对副流感病毒的体外抗病毒活性。
- DOI:10.1021/jm00124a005
- 发表时间:1989
- 期刊:
- 影响因子:7.3
- 作者:Ghose,AK;Crippen,GM;Revankar,GR;McKernan,PA;Smee,DF;Robins,RK
- 通讯作者:Robins,RK
Fast drug-receptor mapping by site-directed distances: a novel method of predicting new pharmacological leads.
通过定点距离快速药物受体作图:一种预测新药理学先导化合物的新方法。
- DOI:10.1021/ci00003a004
- 发表时间:1991
- 期刊:
- 影响因子:0
- 作者:Smellie,AS;Crippen,GM;Richards,WG
- 通讯作者:Richards,WG
Use of augmented Lagrangians in the calculation of molecular conformations by distance geometry.
使用增广拉格朗日量通过距离几何计算分子构象。
- DOI:10.1021/ci00059a001
- 发表时间:1988
- 期刊:
- 影响因子:0
- 作者:Crippen,GM;Smellie,AS;Peng,JW
- 通讯作者:Peng,JW
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GORDON M CRIPPEN其他文献
GORDON M CRIPPEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GORDON M CRIPPEN', 18)}}的其他基金
相似海外基金
A Hierarchy of Fragment-based Quantum Chemical Models Incorporating Machine Learning for Applications in Nanoscale Systems
基于片段的量子化学模型的层次结构结合了机器学习在纳米级系统中的应用
- 批准号:
2102583 - 财政年份:2021
- 资助金额:
$ 9.48万 - 项目类别:
Standard Grant
A hierarchy of composite quantum chemical models for applications in materials chemistry and nanoscience
用于材料化学和纳米科学应用的复合量子化学模型的层次结构
- 批准号:
1665427 - 财政年份:2017
- 资助金额:
$ 9.48万 - 项目类别:
Continuing Grant
A hierarchy of composite quantum chemical models for applications in materials and surface Chemistry
用于材料和表面化学应用的复合量子化学模型的层次结构
- 批准号:
1266154 - 财政年份:2013
- 资助金额:
$ 9.48万 - 项目类别:
Continuing Grant
Physical and chemical models for ignition processes
点火过程的物理和化学模型
- 批准号:
184095471 - 财政年份:2010
- 资助金额:
$ 9.48万 - 项目类别:
Research Units
Chemical Models of Protein beta-Sheet Interactions
蛋白质 β-折叠相互作用的化学模型
- 批准号:
7847773 - 财政年份:2009
- 资助金额:
$ 9.48万 - 项目类别:
Synthetic Chemical Models of Ammonium Arene Interactions
芳烃铵相互作用的合成化学模型
- 批准号:
0739207 - 财政年份:2006
- 资助金额:
$ 9.48万 - 项目类别:
Standard Grant
Synthetic Chemical Models of Ammonium Arene Interactions
芳烃铵相互作用的合成化学模型
- 批准号:
0415586 - 财政年份:2004
- 资助金额:
$ 9.48万 - 项目类别:
Standard Grant
CAREER: Functional Chemical Models of Complex Biochemical Networks
职业:复杂生化网络的功能化学模型
- 批准号:
0349034 - 财政年份:2004
- 资助金额:
$ 9.48万 - 项目类别:
Continuing Grant
Kinetics of Key Radical Reactions for Use in Chemical Models of Chlorinated Hydrocarbon Combustion
氯化烃燃烧化学模型中关键自由基反应的动力学
- 批准号:
0105239 - 财政年份:2001
- 资助金额:
$ 9.48万 - 项目类别:
Standard Grant
Geometrical Dynamics of Excitation in Heart Muscle and Chemical Models
心肌和化学模型中激发的几何动力学
- 批准号:
9974334 - 财政年份:2000
- 资助金额:
$ 9.48万 - 项目类别:
Continuing Grant