Evaluating probabilistic inferential models of learnt sound representations in auditory cortex

评估听觉皮层中学习的声音表征的概率推理模型

基本信息

  • 批准号:
    BB/X013391/1
  • 负责人:
  • 金额:
    $ 25.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Humans, animals, and some artificial intelligence (AI) systems can all build internal representations of their sensory environments that guide and inform their actions. From both evolutionary and engineering standpoints, good representations are those that facilitate flexible and adaptive behavioural outcomes. Training of AI systems often involves providing feedback about outcomes (reinforcement or supervised learning). However, direct feedback about behavioural outcomes is rare in nature. Thus, for animals at least, good internal representations may predominantly be shaped by unsupervised learning from statistical regularities in sensory input. Indeed, many experiments have shown that neural representations and behaviour in animals can be changed by passive exposure to altered sensory environments, especially during early or adolescent development. It is very likely that data-efficient learning in AI systems will also ultimately depend on effective unsupervised learning algorithms.Our goal in this project is to understand the computational principles underlying unsupervised learning of sensory representations in biological systems, and how those computational principles relate to recent advances in unsupervised learning algorithms for AI systems. We will apply state-of-the-art unsupervised inferential approaches to learn probabilistic models of acoustic environments, and evaluate the fidelity with which those models can reproduce neural recordings in the auditory cortex from animals raised in routine and altered acoustic environments. Understanding the statistical principles that organise biological perception is likely to lead to better representational learning in AI systems, without the need for reinforcement or supervision. Conversely, algorithms for efficient, flexible representational learning explored in AI systems will help to elucidate the computational principles governing learning in biological systems.
人类、动物和一些人工智能(AI)系统都可以构建其感官环境的内部表示,以指导和通知他们的行动。从进化和工程的角度来看,好的表征是那些促进灵活和适应性行为结果的表征。人工智能系统的训练通常涉及提供关于结果的反馈(强化或监督学习)。然而,对行为结果的直接反馈在自然界是罕见的。因此,至少对动物来说,良好的内部表征可能主要是通过从感官输入的统计规律中进行无监督学习来形成的。事实上,许多实验表明,动物的神经表征和行为可以通过被动暴露于改变的感官环境而改变,特别是在早期或青少年发育期间。人工智能系统中的数据高效学习很可能最终也将依赖于有效的无监督学习算法。我们在这个项目中的目标是了解生物系统中感官表征的无监督学习的计算原理,以及这些计算原理如何与人工智能系统中无监督学习算法的最新进展相关联。我们将应用最先进的无监督推理方法来学习声环境的概率模型,并评估这些模型在常规和改变声环境中饲养的动物的听觉皮层中再现神经记录的保真度。理解组织生物感知的统计原理,可能会在不需要强化或监督的情况下,在人工智能系统中实现更好的代表性学习。相反,在人工智能系统中探索的高效、灵活的表征学习算法将有助于阐明控制生物系统学习的计算原理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maneesh Sahani其他文献

Multilinear models for the auditory brainstem
  • DOI:
    10.1186/1471-2202-10-s1-p312
  • 发表时间:
    2009-07-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Bernhard Englitzu;Misha Ahrens;Sandra Tolnai;Rudolf Rübsamen;Maneesh Sahani;Jürgen Jost
  • 通讯作者:
    Jürgen Jost

Maneesh Sahani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Studentship
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
  • 批准号:
    EP/Y028783/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Studentship
Understanding conscious and unconscious learning of probabilistic information
理解概率信息的有意识和无意识学习
  • 批准号:
    24K16877
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
  • 批准号:
    24K07723
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
  • 批准号:
    22KJ2747
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Statistical and Probabilistic Reasoning を重視した授業と教師用教材の開発研究
研究和开发以统计和概率推理为重点的课程和教材
  • 批准号:
    23K02801
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Strategic decision-making under non-probabilistic uncertainty
非概率不确定性下的战略决策
  • 批准号:
    2890417
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Studentship
Probabilistic Agent-Based Modelling for Predicting School Attendance
用于预测入学率的基于概率代理的建模
  • 批准号:
    2887257
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了