Non-commutative fundamental groups in Diophantine geometry
丢番图几何中的非交换基本群
基本信息
- 批准号:EP/G024979/2
- 负责人:
- 金额:$ 15.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned primarily with Diophantine equations in two variables, i.e., polynomial relations with integers coefficients for which one seeks to understand the collection of integer solutions. The history of such investigations reaches back to the tradition of Greek mathematics, while the twentieth century has seen spectacular applications of abstract modern machinery to the resolution of difficult old questions, such as Wiles' proof of Fermat's last theorem. The investigator proposes a new approach to studying these classical problems by incorporating fundamental ideas of topology and geometry that go beyond the principal developments of the twentieth century in that the relevant structures are, in the main, non-commutative and non-linear. An eventual goal is to construct methods for effectively resolving Diophantine equations in two-variables.
这一建议主要涉及双变量丢芬图方程,即具有整数系数的多项式关系,人们试图理解整数解的集合。这类研究的历史可以追溯到希腊数学的传统,而20世纪则见证了抽象的现代机器在解决古老难题上的惊人应用,比如怀尔斯对费马大定理的证明。研究者提出了一种新的方法,通过结合拓扑和几何的基本思想来研究这些经典问题,这些思想超越了20世纪的主要发展,因为相关结构主要是非交换的和非线性的。最终的目标是建立有效地求解双变量丢番图方程的方法。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Number Theory, Analysis and Geometry
数论、分析和几何
- DOI:10.1007/978-1-4614-1260-1_16
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Kim M
- 通讯作者:Kim M
Tangential localization for Selmer varieties
Selmer 品种的切向定位
- DOI:10.1215/00127094-1507332
- 发表时间:2012
- 期刊:
- 影响因子:2.5
- 作者:Kim M
- 通讯作者:Kim M
The main conjecture of Iwasawa theory for totally real fields
岩泽理论关于全实域的主要猜想
- DOI:10.1007/s00222-012-0436-x
- 发表时间:2012
- 期刊:
- 影响因子:3.1
- 作者:Kakde M
- 通讯作者:Kakde M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minhyong Kim其他文献
A non-abelian conjecture of Birch and Swinnerton-Dyer type for hyperbolic curves
双曲曲线的 Birch 和 Swinnerton-Dyer 型非阿贝尔猜想
- DOI:
10.1090/conm/416/07884 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jennifer S. Balakrishnan;Ishai Dan;Minhyong Kim;S. Wewers - 通讯作者:
S. Wewers
Weights in cohomology groups arising from hyperplane arrangements
由超平面排列产生的上同调群中的权重
- DOI:
10.1090/s0002-9939-1994-1179589-0 - 发表时间:
1994 - 期刊:
- 影响因子:1
- 作者:
Minhyong Kim - 通讯作者:
Minhyong Kim
A De Rham–Witt approach to crystalline rational homotopy theory
晶体有理同伦理论的 De Rham-Witt 方法
- DOI:
10.1112/s0010437x04000442 - 发表时间:
2001 - 期刊:
- 影响因子:1.8
- 作者:
Minhyong Kim;R. Hain - 通讯作者:
R. Hain
Principal bundles and reciprocity laws in number theory
- DOI:
10.1090/pspum/097.2/01708 - 发表时间:
2018-06 - 期刊:
- 影响因子:0
- 作者:
Minhyong Kim - 通讯作者:
Minhyong Kim
Effective local Langlands correspondence
有效的当地朗兰信件
- DOI:
10.1017/cbo9781107446335.005 - 发表时间:
2014 - 期刊:
- 影响因子:1.8
- 作者:
C. Bushnell;Minhyong Kim;Fred Diamond;Payman L. Kassaei - 通讯作者:
Payman L. Kassaei
Minhyong Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Minhyong Kim', 18)}}的其他基金
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 15.06万 - 项目类别:
Research Grant
Arithmetic Moduli Spaces and Gauge Theory
算术模空间和规范理论
- 批准号:
EP/V046888/1 - 财政年份:2021
- 资助金额:
$ 15.06万 - 项目类别:
Research Grant
Non-commutative fundamental groups in Diophantine geometry
丢番图几何中的非交换基本群
- 批准号:
EP/G024979/1 - 财政年份:2009
- 资助金额:
$ 15.06万 - 项目类别:
Research Grant
WORKSHOP: Non-Commutative Constructions in Arithmetic and Geometry
研讨会:算术和几何中的非交换构造
- 批准号:
EP/G001278/1 - 财政年份:2008
- 资助金额:
$ 15.06万 - 项目类别:
Research Grant
Motivic fundamental groups, multiple polylogarithms, and Diophantine geometry
动机基本群、多重多对数和丢番图几何
- 批准号:
0753012 - 财政年份:2007
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Motivic fundamental groups, multiple polylogarithms, and Diophantine geometry
动机基本群、多重多对数和丢番图几何
- 批准号:
0500504 - 财政年份:2005
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Effective Diophantine Geometry over Function Fields
函数域上的有效丢番图几何
- 批准号:
9701489 - 财政年份:1997
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Conference: Commutative Algebra in The South
会议:南方的交换代数
- 批准号:
2302682 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Homological Commutative Algebra and Symmetry
同调交换代数和对称性
- 批准号:
2302341 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Geometric aspects of the free-fermion and the non-commutative Schur functions
自由费米子和非交换 Schur 函数的几何方面
- 批准号:
23K03056 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Standard Grant
Measuring singularities in commutative algebra
测量交换代数中的奇点
- 批准号:
2302430 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Continuing Grant