Collaborative Research in Energy with South Africa. Intermediate Temperature Proton Conducting Membrane Systems for the Hydrogen Economy

与南非的能源合作研究。

基本信息

  • 批准号:
    EP/G042012/1
  • 负责人:
  • 金额:
    $ 44.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Commercial water electrolysers based on proton exchange membrane (PEM) or solid polymer electrolytes (SPE) enable hydrogen production from pure (demineralised) water and electricity. They offer advantages over alkaline electrolyuser technologies; greater energy efficiency, higher production rates (per unit electrode area), and more compact design. The restricting aspects of these systems are the high cost of the materials; such as the electrolyte membrane and noble metal-based electrocatalysts and the electrical energy input. PEM based water electrolysers operate at temperatures of < 80 oC and have a minimum energy requirement, determined by the equilibrium cell potential (standard potential). Practical cells require higher voltages due to polarisation at electrodes and ohmic voltage losses; raising both energy and economic cost. By operating cells at higher temperatures the free energy of the cell reaction and thus the equilibrium potential falls. Thus solid oxide steam electrolysers (SOSE) operating at high temperatures (>800C) are under development but require a source of thermal energy at high temperatures; which is frequently not available or is expensive to supply. Operating at lower temperatures (150-350 C) gives benefits of reduced energy requirements (thermodynamic potential around 1.12V) and potentially a more practical solution in terms of coupling the thermal energy requirements to provide steam for the cell and reducing the constraints on materials required for very high temperatures.Operating at lower temperatures (150-350C) can also give benefits of reduction in Pt catalyst use and/or use of non-Pt catalysts for electrodes as well as reduced proton conducting membrane costs. In these ways capital and operating costs of PEM hydrogen electrolysers can both be reduced. The aim of this project is to start a collaborative programme between two complimentary groups in the UK and South Africa, that focuses on the development of hydrogen electrolysers in the intermediate temperature range (~200C) that will also have spillover benefits on its sister technology, PEM fuel cells. This programme thereby focuses on a new technology to compete with the two more established electrolysis technologies. The standard PEM electrolyser is already available (low risk) but its electrical efficiency is low. The intermediate temperature PEM electrolyser, although more speculative, could prove valuable if renewable electricity generation increases. Development of this technology requires significant investment into electrolyte research. Existing exploratory research on this topic at Newcastle helps to reduce the risk associated with new electrolyte development.An aim of this project is to increase the operating temperatures of PEM electrolysers through the use of proton conducting membranes; with inorganic and composite electrolytes; thereby reducing voltage requirements (knowing that the standard thermodynamic cell potential falls whilst the activity of electrocatalysts increases). Although high temperature electrolysers (>600C) using oxide ceramic proton conductors have been researched there has been no significant research of the intermediate temperature range between approximately 150-300 C.
基于质子交换膜(PEM)或固体聚合物电解质(SPE)的商用水电解槽可以从纯水(软化水)和电力中生产氢气。与碱性电解槽技术相比,它们具有更高的能源效率、更高的生产率(每单位电极面积)和更紧凑的设计。这些系统的限制方面是材料的高成本;例如电解质膜和基于贵金属的电催化剂以及电能输入。基于PEM的水电解槽在< 80 oC的温度下运行,并且具有由平衡电池电势(标准电势)确定的最低能量需求。由于电极极化和欧姆电压损失,实际的电池需要更高的电压;提高了能量和经济成本。通过在较高温度下操作电池,电池反应的自由能以及因此平衡电势福尔斯下降。因此,在高温(> 800 ℃)下操作的固体氧化物蒸汽电解槽(SOSE)正在开发中,但需要高温下的热能源;这通常是不可用的或供应昂贵。在较低温度下操作(150-350 C)提供了降低能源需求的好处在较低温度下操作可以提供更高的温度(约1.12V的热力学势),并且在耦合热能需求以向电池提供蒸汽以及减少对非常高温度所需的材料的约束方面可能是更实用的解决方案。(150- 350 ℃)也可以提供减少Pt催化剂使用和/或使用非Pt催化剂用于电极以及降低质子传导膜成本的益处。以这些方式,PEM氢电解槽的资本和操作成本都可以降低。该项目的目的是在英国和南非的两个互补团体之间启动一项合作计划,重点开发中温范围(~ 200 C)的氢电解槽,这也将对其姊妹技术PEM产生溢出效应燃料电池。因此,该方案侧重于一种新技术,以与两种更成熟的电解技术竞争。标准PEM电解槽已经可用(低风险),但其电效率较低。中温PEM电解槽虽然更具投机性,但如果可再生能源发电量增加,可能会证明是有价值的。这项技术的发展需要对电解质研究进行大量投资。纽卡斯尔对这一主题的现有探索性研究有助于降低与新电解质开发相关的风险。该项目的一个目的是通过使用质子传导膜提高PEM电解槽的操作温度;使用无机和复合电解质;从而降低电压要求(知道标准热力学电池电势福尔斯下降,而电催化剂的活性增加)。尽管已经研究了使用氧化物陶瓷质子导体的高温电解槽(> 600 ℃),但是还没有对大约150-300 ℃之间的中间温度范围的显著研究。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A reversible water electrolyser with porous PTFE based OH- conductive membrane as energy storage cells
以多孔PTFE基OH-导电膜作为储能电池的可逆水电解槽
  • DOI:
    10.1016/j.jpowsour.2013.07.081
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Wu X
  • 通讯作者:
    Wu X
RuxNb1-xO2 catalyst for the oxygen evolution reaction in proton exchange membrane water electrolysers
用于质子交换膜水电解槽析氧反应的 RuxNb1-xO2 催化剂
Intermediate temperature proton-conducting membrane electrolytes for fuel cells
燃料电池用中温质子传导膜电解质
Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser
  • DOI:
    10.1016/j.jpowsour.2014.06.078
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    V. K. Puthiyapura;M. Mamlouk;S. Pasupathi;B. Pollet;K. Scott
  • 通讯作者:
    V. K. Puthiyapura;M. Mamlouk;S. Pasupathi;B. Pollet;K. Scott
Investigation of supported IrO2 as electrocatalyst for the oxygen evolution reaction in proton exchange membrane water electrolyser
  • DOI:
    10.1016/j.ijhydene.2013.11.056
  • 发表时间:
    2014-02-04
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Puthiyapura, Vinod Kumar;Pasupathi, Sivakumar;Scott, Keith
  • 通讯作者:
    Scott, Keith
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Scott其他文献

Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts: I. Kinetic and thermodynamic studies
  • DOI:
    10.1016/j.cej.2006.11.014
  • 发表时间:
    2007-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Marija Vicevic;Kamelia V.K. Boodhoo;Keith Scott
  • 通讯作者:
    Keith Scott
Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization
  • DOI:
    10.1016/j.energy.2019.04.084
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Lei Xing;Weidong Shi;Huaneng Su;Qian Xu;Prodip K.Das;Baodong Mao;Keith Scott
  • 通讯作者:
    Keith Scott
Hybrid membranes for fuel cells based on nanometer YSZ and polyacrylonitrile matrix
  • DOI:
    10.1016/j.memsci.2006.03.002
  • 发表时间:
    2006-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ioan Stamatin;Adina Morozan;Keith Scott;Anca Dumitru;S. Vulpe;F. Nastase
  • 通讯作者:
    F. Nastase
Disruption tolerant networking proxies for on-the-move tactical networks
Recycle reactor models for complex electrochemical/chemical reaction systems

Keith Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Scott', 18)}}的其他基金

Hydrogen Generation by Electrochemical Water Dissociation
电化学水离解制氢
  • 批准号:
    EP/P033768/1
  • 财政年份:
    2017
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Research Grant
Ionic Liquid Electrolytes for Intermediate Temperature Electrolysers
用于中温电解槽的离子液体电解质
  • 批准号:
    EP/P002455/1
  • 财政年份:
    2016
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Research Grant
Temperature and Alkali Stable Polymer Electrolytes for Hydrogen and Carbon Dioxide Alkaline Electrolysers
用于氢气和二氧化碳碱性电解槽的温度和碱稳定聚合物电解质
  • 批准号:
    EP/M005895/1
  • 财政年份:
    2014
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Research Grant
Hydrogen Electrolyser and Fuel Cell
氢电解槽和燃料电池
  • 批准号:
    EP/H007962/1
  • 财政年份:
    2010
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Research Grant
Supergen Fuel Cell Consortium - Fuel cells - Powering a Greener Future - CORE
Supergen 燃料电池联盟 - 燃料电池 - 为绿色未来提供动力 - CORE
  • 批准号:
    EP/G030995/1
  • 财政年份:
    2009
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Research Grant
Alkaline Polymer Electrolyte Fuel Cells
碱性聚合物电解质燃料电池
  • 批准号:
    EP/F035764/1
  • 财政年份:
    2008
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344722
  • 财政年份:
    2024
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339061
  • 财政年份:
    2024
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
  • 批准号:
    2313768
  • 财政年份:
    2023
  • 资助金额:
    $ 44.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了