Unipotent characters of finite groups
有限群的单能特征
基本信息
- 批准号:EP/G050244/2
- 负责人:
- 金额:$ 12.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research is in the theory of groups. Groups are widely studied abstract mathematical objects. In some sense, group theory is the study of symmetry. Groups have applications in most areas of mathematics, as well as in physics, chemistry and other sciences. I will investigate certain aspects of representations of finite groups. A group may be seen as a collection of abstract elements that can potentially become symmetries. A representation is a way to associate symmetries of a concrete structure to those elements. Representation theory has proved to be an extremely valuable tool for investigating groups. Indeed, representations allowed mathematicians to find relatively easy proofs of deep theorems about groups. One of these theorems was proved by Georg Frobenius as early as 1901, and despite significant efforts, nobody has found a proof that does not use representations ever since. Representations are important in their own right and have numerous applications, for instance, in the study of molecular symmetry in chemistry.Two major types of finite group are of particular importance to this project: groups of Lie type and solvable groups. In the late 1970s Pierre Deligne and George Lusztig made ground-breaking discoveries in representation theory of groups of Lie type. They described representations using ideas from algebraic geometry, a very different branch of mathematics. On the other hand, representations of solvable groups have been successfully investigated by more direct methods.The underlying theme of this project is to bring these two approaches together. I will research representations of intermediate groups, each of which consists of two components, one solvable, and the other of Lie type. The key aim is to extend the geometric ideas of Deligne and Lusztig to a wider class of groups, thus making advances in representation theory of intermediate groups.
我的研究方向是群体理论。群是被广泛研究的抽象数学对象。在某种意义上,群论是研究对称性的。群在数学的大多数领域都有应用,在物理、化学和其他科学领域也是如此。我将研究有限群表示的某些方面。一个群可以被看作是可能成为对称的抽象元素的集合。表示是将具体结构的对称性与这些元素相关联的一种方式。表征理论已被证明是研究群体的一个非常有价值的工具。事实上,表示法使数学家能够找到关于群的深层定理的相对容易的证明。其中一个定理早在1901年就被格奥尔格·弗罗贝纽斯证明了,尽管付出了巨大的努力,但从那以后没有人找到不使用表示的证明。表示本身就很重要,并且有许多应用,例如,在化学中分子对称性的研究中。两种主要类型的有限群对这个项目特别重要:Lie型群和可解群。在20世纪70年代末皮埃尔德利涅和乔治Lusztig作出了突破性的发现,代表性理论的团体的李型。他们用代数几何的思想来描述表示,代数几何是数学的一个非常不同的分支。另一方面,可解群的表示已经通过更直接的方法得到了成功的研究,本项目的主题是将这两种方法结合起来。我将研究中间群的表示,每个中间群由两个分量组成,一个是可解的,另一个是李型的。主要目的是扩大几何思想德利涅和Lusztig更广泛的一类群体,从而取得进展的代表性理论的中间群体。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Character deflations and a generalization of the Murnaghan-Nakayama rule
性格紧缩和穆尔纳汉-中山规则的概括
- DOI:10.1515/jgth-2014-0023
- 发表时间:2014
- 期刊:
- 影响因子:0.5
- 作者:Evseev A
- 通讯作者:Evseev A
The McKay conjecture and Brauer's induction theorem
麦凯猜想和布劳尔归纳定理
- DOI:10.1112/plms/pds058
- 发表时间:2013
- 期刊:
- 影响因子:1.8
- 作者:Evseev A
- 通讯作者:Evseev A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anton Evseev其他文献
Reduction for characters of finite algebra groups
- DOI:
10.1016/j.jalgebra.2010.07.048 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Anton Evseev - 通讯作者:
Anton Evseev
Anton Evseev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anton Evseev', 18)}}的其他基金
Graded representations of symmetric groups and related algebras
对称群及相关代数的分级表示
- 批准号:
EP/L027283/1 - 财政年份:2014
- 资助金额:
$ 12.21万 - 项目类别:
Research Grant
Unipotent characters of finite groups
有限群的单能特征
- 批准号:
EP/G050244/1 - 财政年份:2010
- 资助金额:
$ 12.21万 - 项目类别:
Fellowship
相似海外基金
Eigenvalues of association schemes and characters of finite groups
关联方案的特征值和有限群的特征
- 批准号:
17K05155 - 财政年份:2017
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations and characters of finite classical groups
有限经典群的表示和特征
- 批准号:
467122-2014 - 财政年份:2014
- 资助金额:
$ 12.21万 - 项目类别:
University Undergraduate Student Research Awards
Unipotent characters of finite groups
有限群的单能特征
- 批准号:
EP/G050244/1 - 财政年份:2010
- 资助金额:
$ 12.21万 - 项目类别:
Fellowship
Generalizations of perfect isometries between the sets of characters of finite groups
有限群特征集之间完美等距的推广
- 批准号:
22540021 - 财政年份:2010
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Association schemes and characters of finite groups
有限群的关联方案和特征
- 批准号:
15540011 - 财政年份:2003
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Induced modules over group algebras and induced characters of finite groups
群代数上的归纳模和有限群的归纳特征
- 批准号:
13640008 - 财政年份:2001
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structures and Representations of Association Schemes
协会计划的结构和表示
- 批准号:
12640039 - 财政年份:2000
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Association schemes and characters of finite groups
有限群的关联方案和特征
- 批准号:
10640007 - 财政年份:1998
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LITTLEWOOD TYPE FORMULA OF THE FINITE FORMULA OF THE CLASSICAL GROUPS
经典群有限公式的LITTLEWOOD型公式
- 批准号:
09640037 - 财政年份:1997
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structures and Representations of Association Schemes
协会计划的结构和表示
- 批准号:
09640062 - 财政年份:1997
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)