Phenomenology and Geometry in Heterotic String Compactifications
异质弦紧化中的现象学和几何
基本信息
- 批准号:EP/G051054/1
- 负责人:
- 金额:$ 24.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Large Hadron Collider, an experiment in Geneva, Switzerland, that collides particles at extremely high energies, is heralding a new era in particle physics. The conventional paradigm for particle physics throughout the past forty years has become known as the Standard Model . This describes an eclectic zoo of particles (like protons and electrons) together with a set of equations governing their interactions. However, the Standard Model is far from being the whole story. Above a certain energy range, its description of physics breaks down, and we are left with a fascinating puzzle of what is going on, and how to explain it - if the answer doesn't lie in the Standard Model, then where do we look?Many physicists believe the answer to this question lies within string theory. As opposed to the Standard Model, whose fundamental objects are particles (electrons and protons), the fundamental objects governing string theory are tiny strings. The strings vibrate, much like guitar strings, and their harmonics give rise to objects resembling those described in the Standard Model. In this sense, string theory has the potential to be a theory of everything . However, although promising, string theory is not without problems. For example, it predicts that we live in a ten-dimensional universe. This poses an obvious problem - we observe only four-dimensions (three space dimensions and one time direction), so where are the remaining six? The resolution lies in the notion of compactification . The idea is simple, though difficult to picture mentally: one imagines that six of the ten-dimensions are curled up, encompassing a special type of space so small that the extra dimensions are essentially invisible. This is analogous to looking at a garden hose from a great height: from this perspective, the hose appears to be a one-dimensional snake. The extra, circular dimension becomes apparent only upon closer inspection. The same phenomenon - the presence of additional dimensions perceptible only from particular perspectives - is thought to occur in string theory. The equations that govern string theory impose stringent constraints on the shape and size of the six-dimensional spaces: only certain types of spaces are allowed. On the other hand, the geometry of the space dictates precisely which experimental predictions we will observe in our four-dimensional spacetime. A loose analogy is the following: the laws of gravity imply that for a water slide to work, it must point down. On the other hand, the shape, the twists and the turns of the slide (i.e. its geometry) dictate precisely what people feel as they go down the slide. This is a wonderful example of the interplay between geometry and physics - a key theme of this project. The physics of string theory makes some bold mathematical predictions. One such prediction, known as mirror symmetry , implies that the six-dimensional spaces come in pairs, and that, from our four-dimensional point of view, they look identical. There is still much to learn about the mathematics of mirror symmetry, and it is an interesting question to ask: what can string theory teach us?In this project, we are interested in answering two complementary but related questions:1. What are the four-dimensional experimental predictions for a wide range of possible compactification spaces? Such predictions are expected to take place in the Large Hadron Collider. 2. What does string theory tell us about the mathematics and geometry of compactification spaces? Is there a general notion of mirror symmetry for every possible compactification space?By answering such questions, we will have moved further in our understanding of the fundamental structure of our physical universe, as well as in our understanding of a fundamental structure in mathematics. If the history of physics is anything to go by, these two directions go hand-in-hand.
位于瑞士日内瓦的大型强子对撞机实验以极高的能量对撞粒子,预示着粒子物理学的新时代。在过去的四十年里,粒子物理学的传统范式被称为标准模型。它描述了一个不拘一格的粒子动物园(如质子和电子)以及一组控制它们相互作用的方程。然而,标准模型远不是故事的全部。在一定的能量范围以上,它对物理的描述就崩溃了,我们留下了一个迷人的难题,那就是到底发生了什么,以及如何解释它--如果答案不在标准模型中,那么我们该去哪里找呢?许多物理学家相信这个问题的答案就在弦理论中。标准模型的基本对象是粒子(电子和质子),而弦理论的基本对象是微小的弦。弦振动,很像吉他弦,它们的谐波产生类似于标准模型中描述的物体。从这个意义上说,弦理论有可能成为万有理论。然而,尽管弦理论很有前途,但也不是没有问题。例如,它预言我们生活在一个十维的宇宙中。这就提出了一个明显的问题--我们只观察到四维(三个空间维度和一个时间方向),那么剩下的六个维度在哪里呢?解决之道在于紧化的概念。这个想法很简单,但很难想象:人们想象十个维度中有六个是卷曲的,包含一种特殊类型的空间,这种空间非常小,以至于额外的维度基本上是不可见的。这类似于从很高的高度看花园软管:从这个角度来看,软管似乎是一条一维的蛇。额外的,圆形的维度只有在更仔细的观察时才变得明显。同样的现象--只有从特定的角度才能感觉到额外维度的存在--也被认为发生在弦理论中。弦理论的方程对六维空间的形状和大小施加了严格的限制:只允许某些类型的空间。另一方面,空间的几何形状精确地规定了我们在四维时空中将观察到哪些实验预言。下面是一个松散的类比:重力定律意味着水滑梯要工作,它必须指向下方。另一方面,滑梯的形状、扭曲和转弯(即它的几何形状)精确地决定了人们在滑下滑梯时的感受。这是几何和物理之间相互作用的一个很好的例子-这是这个项目的一个关键主题。弦理论的物理学做出了一些大胆的数学预测。其中一个被称为镜像对称的预言暗示着六维空间是成对的,而且从我们的四维观点来看,它们看起来是相同的。关于镜像对称的数学,我们还有很多东西要学,这是一个有趣的问题:弦理论能教我们什么?在这个项目中,我们有兴趣回答两个互补但相关的问题:1。对于大范围可能的紧化空间,四维的实验预言是什么?这样的预测预计将在大型强子对撞机中进行。2.关于紧化空间的数学和几何,弦论告诉了我们什么?对于每一个可能的紧化空间,是否存在镜像对称的一般概念?通过回答这些问题,我们将进一步理解我们的物理宇宙的基本结构,以及我们对数学基本结构的理解。如果物理学的历史可以追溯,那么这两个方向是齐头并进的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometries, Non-Geometries, and Fluxes
几何、非几何和通量
- DOI:10.48550/arxiv.1004.5447
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:McOrist J
- 通讯作者:McOrist J
Monopole-instantons in M2-brane theories
M2 膜理论中的单极子瞬时
- DOI:10.1007/jhep06(2013)082
- 发表时间:2013
- 期刊:
- 影响因子:5.4
- 作者:Martinec E
- 通讯作者:Martinec E
M-theory and Type IIA Flux Compactifications
M 理论和 IIA 型磁通致密化
- DOI:10.48550/arxiv.1208.0261
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:McOrist J
- 通讯作者:McOrist J
(0,2) Deformations of Linear Sigma Models
线性 Sigma 模型的 (0,2) 变形
- DOI:10.48550/arxiv.1001.2104
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Kreuzer M
- 通讯作者:Kreuzer M
Dynamical vacuum selection in string theory
- DOI:10.1016/j.nuclphysb.2010.02.027
- 发表时间:2009-09
- 期刊:
- 影响因子:0
- 作者:D. Kutasov;O. Lunin;J. McOrist;A. Royston
- 通讯作者:D. Kutasov;O. Lunin;J. McOrist;A. Royston
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jock McOrist其他文献
A Heterotic Hermitian–Yang–Mills Equivalence
- DOI:
10.1007/s00220-025-05272-y - 发表时间:
2025-04-10 - 期刊:
- 影响因子:2.600
- 作者:
Jock McOrist;Sebastien Picard;Eirik Eik Svanes - 通讯作者:
Eirik Eik Svanes
Jock McOrist的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Research Grant
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Fellowship
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Fellowship Award
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant