Increasing the efficiency of numerical methods for estimating the state of a partially observed system. High order methods for solving parabolic PDEs

提高估计部分观测系统状态的数值方法的效率。

基本信息

  • 批准号:
    EP/H000550/1
  • 负责人:
  • 金额:
    $ 40.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Many aspects of phenomena critical to our lives on this planet such as the global climate, the state of the economy, the evolution of the human foetus are not available for direct measurements. Fortunately models of these phenomena, together with more limited observations frequently allow us to make reasonable inferences about the state of the systems that affect us. The process of using partial observations and a stochastic model to make inferences about an evolving system is known as stochastic filtering. The scoop of applications of stochastic filtering is huge and ranges from non-invasive methods to identify tumours to digital recording. The practical implementation of this process to concrete classes of models raises many important mathematical questions. One key question is how to approximate to the true description of the state of the system in an optimal, computationally feasible way. Under certain conditions, the distribution of the hidden'' model solves a non-linear stochastic PDE. It is desirable to find efficient numerical methods to handle this nonlinear PDE. Particle approximations are some of the most successful methods, especially for moderate and high-dimensional models (for example, for satellite tracking one needs to solve a six-dimensional stochastic PDE). A particle approximation uses a cloud of particles that evolve in the underlying state space. The choice of the particles' trajectories has a crucial influence on the properties of the ensuing approximations. The cubature method recently introduced by Lyons and Victoir produces particle approximations for linear/deterministic PDEs. In this case the particle evolve along admissible trajectory (unlike those produced by classical methods such us the Euler methods) and branch at pre-determined time intervals. The proposed research aims to extend the cubature results and the methods to produce high order approximations for the nonlinear stochastic PDE governing the solution of the filtering problem. Moreover we aim to tackle the increase in the complexity of the computation with time. We aim to study two methods for doing this: The first method consists in the addition of a randomized selection by which the particles that follow the right paths are multiplied and those drifting away from the plausible signal trajectories are rapidly removed. The second method consists in a recombination procedure by which the population of particles is divided into subsets. Then each subset of existing particles is replaced by a single particle which inherits the position of one of the particles in the original subset. The particles are recombined in a way that keeps the accuracy of the approximation unchanged.
对我们在这个星球上的生活至关重要的现象的许多方面,例如全球气候、经济状况、人类胎儿的进化,都无法直接测量。幸运的是,这些现象的模型以及更有限的观察经常使我们能够对影响我们的系统的状态做出合理的推断。使用部分观察和随机模型对不断演化的系统进行推断的过程称为随机过滤。随机滤波的应用范围非常广泛,从识别肿瘤的非侵入性方法到数字记录。这一过程在具体模型类别中的实际实现提出了许多重要的数学问题。一个关键问题是如何以一种最佳的、计算上可行的方式逼近系统状态的真实描述。在某些条件下,隐藏模型的分布求解非线性随机偏微分方程。人们希望找到有效的数值方法来处理这种非线性偏微分方程。粒子近似是最成功的方法之一,特别是对于中维和高维模型(例如,对于卫星跟踪,需要求解六维随机偏微分方程)。粒子近似使用在底层状态空间中演化的粒子云。粒子轨迹的选择对随后的近似值的性质具有至关重要的影响。 Lyons 和 Victoir 最近引入的立方法可生成线性/确定性偏微分方程的粒子近似值。在这种情况下,粒子沿着可接受的轨迹演化(与欧拉方法等经典方法产生的轨迹不同)并以预定的时间间隔分支。所提出的研究旨在扩展体积结果和方法,以产生控制滤波问题解决方案的非线性随机偏微分方程的高阶近似值。此外,我们的目标是解决计算复杂性随时间增加的问题。我们的目标是研究两种方法来实现这一点:第一种方法包括添加随机选择,通过该随机选择,遵循正确路径的粒子会成倍增加,而那些偏离合理信号轨迹的粒子会被快速移除。第二种方法包括重组过程,通过该过程将粒子群划分为子集。然后,现有粒子的每个子集都被单个粒子替换,该粒子继承原始子集中粒子之一的位置。粒子以保持近似精度不变的方式重新组合。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Paris-Princeton Lectures on Mathematical Finance 2013: Editors: Vicky Henderson, Ronnie Sircar
巴黎-普林斯顿数学金融讲座 2013:编辑:Vicky Henderson、Ronnie Sircar
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benth Fred Espen
  • 通讯作者:
    Benth Fred Espen
A high order time discretization of the solution of the non-linear filtering problem
非线性滤波问题解的高阶时间离散化
  • DOI:
    10.1007/s40072-019-00157-3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Crisan D
  • 通讯作者:
    Crisan D
ON THE STABILITY OF SEQUENTIAL MONTE CARLO METHODS IN HIGH DIMENSIONS
  • DOI:
    10.1214/13-aap951
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Beskos, Alexandros;Crisan, Dan;Jasra, Ajay
  • 通讯作者:
    Jasra, Ajay
Kusuoka-Stroock gradient bounds for the solution of the filtering equation
滤波方程解的 Kusuoka-Stroock 梯度界限
Numerical solution for a class of SPDEs over bounded domains
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Crisan其他文献

Noise calibration for SPDEs: A case study for the rotating shallow water model
SPDE 的噪声校准:旋转浅水模型的案例研究
  • DOI:
    10.3934/fods.2023012
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Dan Crisan;Oana Lang;Alexander Lobbe;Peter;Roland Potthast
  • 通讯作者:
    Roland Potthast
A probabilistic representation of the derivative of a one dimensional killed diffusion semigroup
一维杀死扩散半群导数的概率表示
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dan Crisan;A. Kohatsu
  • 通讯作者:
    A. Kohatsu
Data assimilation for the stochastic Camassa-Holm equation using particle filtering: a numerical investigation
使用粒子滤波的随机 Camassa-Holm 方程的数据同化:数值研究
  • DOI:
    10.48550/arxiv.2402.06927
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Colin John Cotter;Dan Crisan;Maneesh Kumar Singh
  • 通讯作者:
    Maneesh Kumar Singh
Nudging state-space models for Bayesian filtering under misspecified dynamics
  • DOI:
    10.1007/s11222-025-10648-0
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Fabián González;O. Deniz Akyildiz;Dan Crisan;Joaquín Míguez
  • 通讯作者:
    Joaquín Míguez
Generative Modelling of Stochastic Rotating Shallow Water Noise
随机旋转浅水噪声的生成模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dan Crisan;Oana Lang;Alexander Lobbe
  • 通讯作者:
    Alexander Lobbe

Dan Crisan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

LED芯片老化过程中有源区的缺陷演化机理研究
  • 批准号:
    61504112
  • 批准年份:
    2015
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
p型GaN单晶衬底的HVPE制备及生长物理研究
  • 批准号:
    61574164
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
III-族氮化物LEDs的复杂界面对注入载流子发光效率影响的研究
  • 批准号:
    11174241
  • 批准年份:
    2011
  • 资助金额:
    51.0 万元
  • 项目类别:
    面上项目
大功率InGaN基LED新型外延结构研究
  • 批准号:
    61076119
  • 批准年份:
    2010
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
收缩估计作为模型选择方法的有效性研究
  • 批准号:
    10771006
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
  • 批准号:
    2207616
  • 财政年份:
    2022
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
  • 批准号:
    2207615
  • 财政年份:
    2022
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Standard Grant
Boosting Algorithmic Efficiency: Numerical Relativity in Dynamical, Curvilinear Coordinates
提高算法效率:动态曲线坐标中的数值相对论
  • 批准号:
    2110352
  • 财政年份:
    2021
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Standard Grant
Direct Numerical Simulation and Advanced Modelling of Turbulent Flame Kernels for High-Efficiency Low-Emission Spark Ignition Engine
高效低排放火花点火发动机湍流火焰内核的直接数值模拟和高级建模
  • 批准号:
    2282984
  • 财政年份:
    2019
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Studentship
Improving the Accuracy, Robustness, and Computational Efficiency of the Spinning, Precessing Effective-One-Body Numerical-Relativity (SEOBNRv3/SEOBNRv4P) Codes
提高旋转、进动有效单体数值相对论 (SEOBNRv3/SEOBNRv4P) 代码的准确性、鲁棒性和计算效率
  • 批准号:
    1912497
  • 财政年份:
    2019
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Continuing Grant
Development of a numerical tool to deal with complex fluid/structure interactions: applications in energy efficiency, biomechanics and marine propulsion
开发处理复杂流体/结构相互作用的数值工具:在能源效率、生物力学和船舶推进方面的应用
  • 批准号:
    RGPIN-2015-06512
  • 财政年份:
    2019
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a numerical tool to deal with complex fluid/structure interactions: applications in energy efficiency, biomechanics and marine propulsion
开发处理复杂流体/结构相互作用的数值工具:在能源效率、生物力学和船舶推进方面的应用
  • 批准号:
    RGPIN-2015-06512
  • 财政年份:
    2018
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Discovery Grants Program - Individual
Boosting Algorithmic Efficiency: Numerical Relativity in Dynamical, Curvilinear Coordinates
提高算法效率:动态曲线坐标中的数值相对论
  • 批准号:
    1806596
  • 财政年份:
    2018
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Continuing Grant
Development of a numerical tool to deal with complex fluid/structure interactions: applications in energy efficiency, biomechanics and marine propulsion
开发处理复杂流体/结构相互作用的数值工具:在能源效率、生物力学和船舶推进方面的应用
  • 批准号:
    RGPIN-2015-06512
  • 财政年份:
    2017
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a numerical tool to deal with complex fluid/structure interactions: applications in energy efficiency, biomechanics and marine propulsion
开发处理复杂流体/结构相互作用的数值工具:在能源效率、生物力学和船舶推进方面的应用
  • 批准号:
    RGPIN-2015-06512
  • 财政年份:
    2016
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了