Feasibility Study: Statistical Modelling of Microstructural Variables in Particulate Filled Composite Materials

可行性研究:颗粒填充复合材料中微观结构变量的统计建模

基本信息

  • 批准号:
    EP/H00582X/1
  • 负责人:
  • 金额:
    $ 6.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Particulate reinforced polymers are becoming an increasingly important class of materials particularly with the development of nanotechnology. Modern materials may be composites on many scales containing both fibres and particles. The microstructure of the particulate phase can be very varied. These variations include both changing particle size and distribution. The overall aim of this feasibility study is to explore the role of statistical modelling in defining the microstructural dependence of the mechanical properties of particulate composite materials. The microstructural parameters which will be included in this feasibility study will be particle size and particle distribution. This proposal has been inspired by work currently being undertaken. To obtain the best properties from a particle-modified polymer, it is considered that the particles should be well-dispersed, and each particle should be wetted by the polymer. If this is not the case, then the agglomerates will act as defects resulting in a reduction in performance rather than any enhancement. The material properties affected by poor dispersion include elastic properties (such as stiffness); strength; fracture behaviour, permeability and conductivity. Achieving a good dispersion is a major challenge when preparing formulations. The dispersion of particles in general, and especially nanoparticles, is difficult due to the high surface area and incompatability with the matrix polymer, and generally a surface treatment or compatabiliser is required. However, this does not guarantee that a good stable dispersion will be achieved even when ultrasonication or high-shear mixing is used. Once agglomeration occurs it is very difficult to break up the agglomerates.Assessing the degree of dispersion is very subjective, and the dispersion may vary across the length scales. For example a sample may look homogeneous at the macroscale, but electron microscopy may indicate that the particles are agglomerated at the micro- or nanoscale. What is required to remove this subjectivity is a numerical value of a parameter that quantifies the degree of dispersion. However, to the investigators' knowledge, there are no quantitative methods to assess the dispersion of particles. The qualitative methods currently used generally rely on an operator's opinion, and hence one person's 'good' dispersion is 'poor' to someone else. The ability to provide a numerical value to describe the degree of dispersion will allow faster screening of surface treatments for particles and improved process control. It will provide both academia and industry with the ability to assess and follow the evolution of agglomeration, without the subjectivity attached to current methods.
特别是随着纳米技术的发展,颗粒增强聚合物正在成为一类越来越重要的材料。现代材料可能是多种尺度的复合材料,同时含有纤维和颗粒。颗粒相的微观结构可以变化很大。这些变化包括改变颗粒尺寸和分布。本可行性研究的总体目标是探索统计模型在定义颗粒复合材料机械性能的微观结构依赖性方面的作用。本可行性研究中将包括的微观结构参数是颗粒尺寸和颗粒分布。该提案的灵感来自于当前正在进行的工作。为了从颗粒改性聚合物获得最佳性能,认为颗粒应良好分散,并且每个颗粒应被聚合物润湿。如果情况并非如此,则团聚体将充当缺陷,导致性能降低而不是任何增强。受色散不良影响的材料性能包括弹性性能(如刚度);力量;断裂行为、渗透率和电导率。实现良好的分散是制备配方时的主要挑战。由于高表面积和与基质聚合物的不相容性,一般颗粒,特别是纳米颗粒的分散是困难的,并且通常需要表面处理或相容剂。然而,这并不能保证即使使用超声处理或高剪切混合也能实现良好的稳定分散。一旦发生团聚,就很难打散团聚体。评估分散程度是非常主观的,并且分散程度可能在不同长度尺度上有所不同。例如,样品在宏观尺度上可能看起来均匀,但电子显微镜可能表明颗粒在微米或纳米尺度上聚集。消除这种主观性需要的是量化分散程度的参数的数值。然而,据研究人员所知,没有定量方法来评估颗粒的分散性。目前使用的定性方法通常依赖于操作者的意见,因此一个人的“良好”分散对其他人来说是“差”。提供数值来描述分散程度的能力将允许更快地筛选颗粒的表面处理并改进过程控制。它将为学术界和工业界提供评估和跟踪集聚演变的能力,而无需当前方法的主观性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effects of particle morphology on the analysis of discrete particle dispersion using Delaunay tessellation
Characterizing Mechanical Properties of Hybrid Alumina Carbon Fiber Composites with Piezospectroscopy
  • DOI:
    10.2514/6.2016-1413
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Hanhan;A. Selimov;D. Carolan;A. Taylor;S. Raghavan
  • 通讯作者:
    I. Hanhan;A. Selimov;D. Carolan;A. Taylor;S. Raghavan
Handbook of Functional Nanomaterials. Volume 2 - Characterization and Reliability
功能纳米材料手册。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bray, D.J., Taylor, A.C.
  • 通讯作者:
    Bray, D.J., Taylor, A.C.
Quantifying the Dispersion of Nanoparticles in Adhesives
量化粘合剂中纳米颗粒的分散情况
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taylor AC
  • 通讯作者:
    Taylor AC
Characterization of Hybrid Carbon Fiber Composites using Photoluminescence Spectroscopy
使用光致发光光谱表征混合碳纤维复合材料
  • DOI:
    10.2514/6.2017-0123
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selimov A
  • 通讯作者:
    Selimov A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ambrose Taylor其他文献

Tribology of PTFE in Hydrogen Atmosphere
聚四氟乙烯在氢气氛围中的摩擦学特性
  • DOI:
    10.1016/j.triboint.2024.110481
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Shouyi Yin;Ambrose Taylor;Janet S.S. Wong
  • 通讯作者:
    Janet S.S. Wong

Ambrose Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ambrose Taylor', 18)}}的其他基金

Quantification and modelling of the fracture & fatigue performance of nanoparticle-modified epoxies
断裂的量化和建模
  • 批准号:
    EP/E026702/1
  • 财政年份:
    2007
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Continuing Grant
Study of Human Statistical Biases on Unsupervised Parsing and Language Modeling
无监督句法分析和语言建模的人类统计偏差研究
  • 批准号:
    23KJ0565
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Observational entropy and statistical inference: a mathematical study
观察熵和统计推断:数学研究
  • 批准号:
    23K03230
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study of ion transport in ZIP8 protein based on statistical mechanics theory of liquids
基于液体统计力学理论的ZIP8蛋白离子输运理论研究
  • 批准号:
    23K19236
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
  • 批准号:
    RGPIN-2018-04462
  • 财政年份:
    2022
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
  • 批准号:
    10428940
  • 财政年份:
    2022
  • 资助金额:
    $ 6.27万
  • 项目类别:
Statistical Inference for Novel Study Designs
新颖研究设计的统计推断
  • 批准号:
    EP/V049968/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Research Grant
A Statistical Study of Coronal Holes and Active Regions Producing Intense Geomagnetic Storms over Four Solar Cycles
四个太阳周期内产生强烈地磁暴的冕洞和活动区的统计研究
  • 批准号:
    2201767
  • 财政年份:
    2022
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Continuing Grant
Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
  • 批准号:
    10627876
  • 财政年份:
    2022
  • 资助金额:
    $ 6.27万
  • 项目类别:
THE CONTRACTOR SHALL MAINTAIN AND SUPPORT STUDY DATA INFRASTRUCTURE, DATA MANAGEMENT AND DATA PREPARATION, AND ADVANCED STATISTICAL AND BIOINFORMATICS
承包商应维护和支持研究数据基础设施、数据管理和数据准备以及高级统计和生物信息学
  • 批准号:
    10710597
  • 财政年份:
    2022
  • 资助金额:
    $ 6.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了