Homogeneous structures, homomorphism-homogeneity, and automorphism groups
同构结构、同态同构和自同构群
基本信息
- 批准号:EP/H00677X/1
- 负责人:
- 金额:$ 43.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consider a graph (a set of vertices, with some pairs of vertices joined by edges), or a digraph (where edges have a direction) or generalizations (say where vertices or edges have several possible colours). Symmetry is a familiar notion from geometry. A symmetry of a graph is an `automorphism', and the amount of symmetry is measured by the richness of the `automorphism group'. Often, highly symmetrical objects are unique, or canonical, or categorical, and arise very naturally in mathematics. Here we consider `homogeneous' structures (e.g. graphs, digraphs), namely countably infinite structures such that any finite partial isomorphism extends to an automorphism (informally, if two finite parts look the same, this is witnessed by a global symmetry).The initial theory of homogeneous structures was developed as part of model theory (mathematical logic). One of the key achievements was a classification by Cherlin, in a monograph in 1998, of the homogeneous digraphs. The class of examples has great complexity but the description is clean and beautiful. However, the classification sheds little light on what homogeneous (even binary) structures look like in general, and in the introduction Cherlin says his classification `brings us into the dark ages'.The very general framework of homogeneity means that the subject touches many parts of mathematics, such as model theory, connections of finite model theory with computer science, group theory, descriptive set theory, and, in particular, combinatorics. Much of this has developed since Cherlin's memoir. For example, there is now wide interest in homogeneous metric spaces, in connections with structural Ramsey theory in combinatorics, and with topological dynamics. It has become urgent to revisit classification in homogeneous structures, to identify how far it can reasonably be taken, and whether, if one requires less than full classification, meaningful descriptions remain. This is at the heart of the current project.We shall relate this taxonomy to other exciting recent developments. Common themes arising in Ramsey theory and topological groups tell us to investigate ordered homogeneous structures. Intriguing generalizations of homogeneity, with isomorphisms replaced by homomorphisms, are starting to emerge. The project will develop these, and also more traditional themes: the structure of the automorphism groups, classification problems under weaker symmetry assumptions, and connections with combinatorial enumeration (counting the number of objects of given size in a class).A very recent theme in this subject is a connection with constraint satisfaction, a topic in computer science. It leads naturally to the complexity-theoretic question, given some relational structure M (a template): for input any finite structure S, is there a homomorphism from S to M? For many homogeneous (or more generally, omega-categorical) structures, this is a natural and important computational problem. This leads to the formulation of some new and beautiful questions about `reducts' of homogeneous structures. Constraint satisfaction also motivates the study of `homomorphism-homogeneous' structures.
考虑一个图(一组顶点,其中一些顶点由边连接),或一个有向图(其中边有方向)或推广(例如顶点或边有几种可能的颜色)。对称性是一个熟悉的几何概念。图的对称性是一种“自同构”,对称性的大小是由“自同构群”的丰富度来衡量的。通常,高度对称的对象是唯一的,或规范的,或分类的,并且在数学中非常自然地出现。这里我们考虑“齐次”结构(例如图,有向图),即可数无限结构,使得任何有限部分同构扩展到自同构(非正式地,如果两个有限部分看起来相同,这是由全局对称性证明的)。齐次结构的最初理论是作为模型论(数理逻辑)的一部分发展起来的。其中一个重要的成就是分类的切尔林,在专着在1998年,齐次有向图。类的例子有很大的复杂性,但描述是干净和美丽的。然而,这种分类几乎没有揭示什么是同质的。(甚至是二元)结构看起来一般,在介绍Cherlin说,他的分类“把我们带到了黑暗时代”。同质性的非常一般的框架意味着这个主题涉及数学的许多部分,如模型论,有限模型论与计算机科学的联系,群论,描述性集合论,特别是,组合学这在很大程度上是在切尔林的回忆录之后发展起来的。例如,现在有广泛的兴趣,在齐次度量空间,在连接与结构拉姆齐理论在组合,并与拓扑动力学。现在迫切需要重新审视同质结构中的分类,以确定它可以合理地进行到什么程度,以及如果需要不完全的分类,是否仍然存在有意义的描述。这是当前项目的核心。我们将把这种分类与其他令人兴奋的最新发展联系起来。在拉姆齐理论和拓扑群中出现的共同主题告诉我们要研究有序的齐次结构。有趣的同质性推广,用同态取代同构,开始出现。该项目将发展这些,也更传统的主题:自同构群的结构,较弱的对称性假设下的分类问题,以及与组合枚举(计算类中给定大小的对象的数量)的联系。它自然地导致复杂性理论的问题,给定一些关系结构M(模板):对于输入任何有限结构S,是否存在从S到M的同态?对于许多齐次(或更一般地说,Ω范畴)结构,这是一个自然而重要的计算问题。这导致制定一些新的和美丽的问题有关的“约简”的同质结构。约束满足也激发了对“同态-齐次”结构的研究。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Classification of Countable Lower 1-transitive Linear Orders
可数低1传递线性阶的分类
- DOI:10.1007/s11083-017-9427-2
- 发表时间:2017
- 期刊:
- 影响因子:0.4
- 作者:Barbina S
- 通讯作者:Barbina S
Groups, Modules, and Model Theory - Surveys and Recent Developments
群、模块和模型理论 - 调查和最新发展
- DOI:10.1007/978-3-319-51718-6_17
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Glass A
- 通讯作者:Glass A
Constraint satisfaction tractability from semi-lattice operations on infinite sets
无限集上半格操作的约束满足可处理性
- DOI:10.1145/2528933
- 发表时间:2013
- 期刊:
- 影响因子:0.5
- 作者:Bodirsky M
- 通讯作者:Bodirsky M
Countable Homogeneous Lattices
可数齐次格子
- DOI:10.1007/s11083-014-9328-6
- 发表时间:2014
- 期刊:
- 影响因子:0.4
- 作者:Abogatma A
- 通讯作者:Abogatma A
REDUCTS OF STRUCTURES AND MAXIMAL-CLOSED PERMUTATION GROUPS
结构的约简和最大闭置换群
- DOI:10.1017/jsl.2015.78
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:BODIRSKY M
- 通讯作者:BODIRSKY M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Truss其他文献
John Truss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Truss', 18)}}的其他基金
Homogeneous structures, bipartite graphs, and partial orders
同质结构、二部图和偏序
- 批准号:
EP/D048249/1 - 财政年份:2006
- 资助金额:
$ 43.27万 - 项目类别:
Research Grant
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 43.27万 - 项目类别:
Studentship
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
- 批准号:
DP240101708 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Research Grant
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Continuing Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
- 批准号:
24K07680 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)