Modelling correlated electron-ion diffusion in nano-scale TiO2: beyond periodic model and density functional theory
模拟纳米级 TiO2 中相关电子-离子扩散:超越周期模型和密度泛函理论
基本信息
- 批准号:EP/H018115/1
- 负责人:
- 金额:$ 12.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A principal focus of one of the current research grand challenges is on reducing society's dependence on the use of fossil fuels and thus decreasing the CO2 emission levels. A major strategic component of this challenge is replacing liquid fuels (petrol, diesel, and kerosene), as main fuel sources for automotive and aerospace applications, with alternatives such as solar cells, hydrogen fuel cells, and electric batteries. In particular, several models of automobiles operating on Li batteries are already mass-produced. However, the market niche taken up by the electric cars remains small due to long battery charging times, small energy capacity, and aging. For example, the G-Wiz, which is popular among inner London residents, has a charging time of 8 hours and maximum range of ~50 miles, while a new (2008 production) all-electric sports car the Tesla Roadster needs up to 17 hours of charging time for a 240 mile journey. Non-incremental improvements of Li battery characteristics are needed to dramatically increase the fraction of electric automobiles and, thus, considerably reduce noise, pollution, and CO2 emission levels, which, in turn, will have beneficial economical, environmental, and health implications. The use of nano-structured electrode materials, in particular, nano-structured TiO2 based compounds, emerged as a promising strategy for increasing performance characteristics of Li batteries. This research project aims to facilitate the development of new electrode materials through quantum-mechanical modelling of the atomic-scale mechanisms and kinetics of Li ion migration coupled with electron hopping. We will investigate the effects of the Li+ - electron interaction by comparing the kinetics of their migration individually and as a pair. To investigate the effects of nano-structuring, we will compare the migration kinetics of the Li+ and e- species in the bulk and in the vicinity of the grain boundary. Understanding the effect of the Li+/e- coupling and that of the interface structure would provide us with a variety of protocols for controlling and optimising the energy capacity and charging speed. Some of these protocols may include selecting characteristic size of TiO2 nano-structures and controlling electron injection. Despite being a generic problem, correlated ion-electron migration in oxides has not been properly addressed on the quantum mechanical level. This is because widely used ab initio methods based on the density functional theory (DFT) severely underestimate the band gap of insulators and semiconductors, which results in a qualitatively incorrect description of the properties of trapped electrons. In addition, these methods employ a periodic boundary conditions model, which is not applicable to modelling complex non-periodic structures. In this proposal, we will break through these limitations and apply an embedded cluster method specifically designed for modelling defects in irregular surfaces and interfaces. As a part of this proposal, we will develop new forms of consistent long-range electrostatic and short-range embedding potentials. This will allow us to apply accurate quantum-chemical methods for electronic structure calculations, which do not suffer from drawbacks of conventional DFT techniques. These embedding potentials can be used in other computational studies of numerous electronic phenomena associated with TiO2 bulk, surfaces, interfaces, and nano-structures. To facilitate their wider availability, we will collaborate with developers of computer packages for quantum-chemical calculations.
当前研究的重大挑战之一的主要焦点是减少社会对化石燃料使用的依赖,从而降低二氧化碳排放水平。这一挑战的一个主要战略组成部分是用太阳能电池、氢燃料电池和电池等替代品取代液体燃料(汽油、柴油和煤油)作为汽车和航空航天应用的主要燃料来源。特别是,多款锂电池汽车已经实现量产。然而,由于电池充电时间长、能量容量小和老化,电动汽车所占据的市场份额仍然很小。例如,深受伦敦内城区居民欢迎的 G-Wiz 充电时间为 8 小时,最大续航里程约为 50 英里,而新型(2008 年生产)全电动跑车 Tesla Roadster 需要长达 17 小时的充电时间才能行驶 240 英里。需要对锂电池特性进行非渐进式改进,以显着提高电动汽车的比例,从而显着降低噪音、污染和二氧化碳排放水平,从而产生有益的经济、环境和健康影响。使用纳米结构电极材料,特别是纳米结构二氧化钛基化合物,成为提高锂电池性能特征的一种有前景的策略。该研究项目旨在通过锂离子迁移与电子跳跃的原子尺度机制和动力学的量子力学建模,促进新型电极材料的开发。我们将通过比较单独和成对的迁移动力学来研究 Li+ - 电子相互作用的影响。为了研究纳米结构的影响,我们将比较 Li+ 和 e- 物质在本体和晶界附近的迁移动力学。了解Li+/e-耦合的影响以及界面结构的影响将为我们提供多种用于控制和优化能量容量和充电速度的协议。其中一些方案可能包括选择 TiO2 纳米结构的特征尺寸和控制电子注入。尽管是一个普遍问题,但氧化物中相关的离子-电子迁移尚未在量子力学水平上得到适当解决。这是因为广泛使用的基于密度泛函理论(DFT)的从头计算方法严重低估了绝缘体和半导体的带隙,从而导致对俘获电子特性的定性描述不正确。此外,这些方法采用周期性边界条件模型,不适用于复杂非周期性结构的建模。在本提案中,我们将突破这些限制,并应用专门为不规则表面和界面中的缺陷建模而设计的嵌入式聚类方法。作为该提案的一部分,我们将开发新形式的一致的远程静电和短程嵌入电势。这将使我们能够应用精确的量子化学方法进行电子结构计算,而不会遇到传统 DFT 技术的缺点。这些嵌入势可用于与 TiO2 块体、表面、界面和纳米结构相关的众多电子现象的其他计算研究。为了促进其更广泛的可用性,我们将与用于量子化学计算的计算机软件包开发商合作。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Embedding and atomic orbitals hybridization
嵌入和原子轨道杂化
- DOI:10.1002/qua.22820
- 发表时间:2010
- 期刊:
- 影响因子:2.2
- 作者:Abarenkov I
- 通讯作者:Abarenkov I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Sushko其他文献
Peter Sushko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Sushko', 18)}}的其他基金
Multiscale Modelling of Metal-Semiconductor Contacts for the Next Generation of Nanoscale Transistors
下一代纳米级晶体管金属-半导体接触的多尺度建模
- 批准号:
EP/I009973/1 - 财政年份:2011
- 资助金额:
$ 12.94万 - 项目类别:
Research Grant
Learning to control structure and properties of nano-scale ferroelectrics using defects
学习利用缺陷控制纳米级铁电体的结构和性能
- 批准号:
EP/H018212/1 - 财政年份:2010
- 资助金额:
$ 12.94万 - 项目类别:
Research Grant
相似国自然基金
共振价键理论及其在强关联电子体系中的应用
- 批准号:11174364
- 批准年份:2011
- 资助金额:54.0 万元
- 项目类别:面上项目
拓扑绝缘体中的强关联现象
- 批准号:11047126
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
Theoretical Spectroscopy and Thermodynamics of Correlated Electron Materials
相关电子材料的理论光谱学和热力学
- 批准号:
2233892 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
Disorder and the Emergence of Inhomogeneous Phases in Strongly Correlated Electron Systems
强相关电子系统中的无序和非均匀相的出现
- 批准号:
2231821 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2337930 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
Subcycle-pulse engineering in strongly correlated electron systems
强相关电子系统中的亚周期脉冲工程
- 批准号:
23K13066 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultrafast spectroscopy simulation of low-dimensional strongly correlated electron systems using tensor network
使用张量网络的低维强相关电子系统的超快光谱模拟
- 批准号:
23K03286 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of local parity mixing states in uranium-based strongly-correlated-electron systems
铀基强相关电子系统中局域宇称混合态的阐明
- 批准号:
23H01113 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Competing charge, spin, and molecular lattice interactions lead to quantum glass phases in strongly correlated pi-electron systems
竞争性电荷、自旋和分子晶格相互作用导致强相关π电子系统中的量子玻璃相
- 批准号:
23H01114 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control theory of photo-induced dynamics in correlated electron systems utilizing phonon-excitation
利用声子激发的相关电子系统光致动力学控制理论
- 批准号:
23KJ0883 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nuclear Magnetic Resonance Studies of Quantum Criticality in Correlated Electron Materials
相关电子材料量子临界性的核磁共振研究
- 批准号:
2210613 - 财政年份:2022
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
Theory of Dynamical Correlated-Electron Processes in Molecules Induced and Probed with x-Ray Light
X 射线诱导和探测的分子动态关联电子过程理论
- 批准号:
2207656 - 财政年份:2022
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant














{{item.name}}会员




