From conformal loop ensembles to conformal field theory
从共形环系综到共形场论
基本信息
- 批准号:EP/H051619/1
- 负责人:
- 金额:$ 12.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sometimes, many basic constituents that are interacting amongst each other in simple and understood ways, such as electrons in a metal, molecules in a liquid, or buyers and sellers on the stock market, when present in large numbers, give rise to unexpected results on large scales. This is usually called emergent behaviours , and it is very hard to predict, in general, what such behaviours can be. Many systems of interest to physicists are those with very many constituents that can fluctuate (thermally or quantum mechanically) while interacting amongst not-too-far neighbours. Quite surprisingly, although the interaction is local , it happens in some situations that the constituents form very large groups, chains of very many neighbours, that fluctuate together, as if the groups were new constituents of a new system. These are emergent behaviours. Situations where big groups tend to form are called critical , because then the system is hyper-sensitive to external disturbances: whole groups will react to such disturbances, producing a big, large-distance change. Naturally, these quite surprising emergent collective behaviours are responsible for a wealth of interesting physical phenomena, like the formation of Kondo clouds that change conductive properties of metals with magnetic impurities. It is also tempting, and promise to be fruitful in the future, to make a connection with the emergent behaviours from individual agents in macroeconomics: a small sub-prime market crash gave us an international recession!Physicists came up with a very powerful theory, based on physical principles, that describes the emergent behaviours in critical systems. This is quantum field theory. In fact, one of the great achievements of theoretical physics of the twentieth century is the understanding that all fundamental particles that are observed in current-day experiments can be understood as emerging from a simpler, more symmetrical theory: this is the standard model of quantum field theory. We then have an understanding of such emergent behaviours, but this understanding does not form yet a mathematically coherent whole, neither is it a complete understanding of the emergent collectivities themselves. We understand emergent behaviours through quantum particles and how they scatter, through energy and how it varies locally, and through local probes and how they react to local disturbances. But we often don't know how to relate these various ideas, and how to connect them to, and actually describe, the fluctuating emergent collectivities of constituents.Conformal field theory is a family of models of quantum field theory where the standard elements of our understanding enumerated above are much better developed and connected to each other. They correspond to a small, but very instructive, corner of quantum field theory. About three years ago, mathematicians proposed a family of mathematical measures supposed, and sometimes proved, to describe certain aspects of large-distance behaviours in critical systems, aspects that fall into the corner described by conformal field theory. In some works, I recently emphasized that these measures in fact exactly describe all emergent fluctuating objects in that corner, at least for a wide family of models. My research consists in using these mathematical measures in order to fully connect the emergent collectivities with the powerful structure of conformal field theory. This will give us an entirely new insight into the more subtle way emergent objects behave, and will provide, for the first time, a complete path from underlying many-constituent systems, to quantum field theory.
有时,许多基本成分以简单易懂的方式相互作用,例如金属中的电子、液体中的分子或股票市场上的买家和卖家,当大量存在时,会产生意想不到的大规模结果。这通常被称为紧急行为,一般来说,很难预测这种行为是什么。物理学家感兴趣的许多系统是那些具有许多成分的系统,这些成分在不太远的邻居之间相互作用时会发生波动(热或量子力学)。令人惊讶的是,尽管相互作用是局部的,但在某些情况下,成分会形成非常大的群体,由许多邻居组成的链,它们一起波动,就好像这些群体是新系统的新成分一样。这些都是紧急行为。倾向于形成大群体的情况被称为“临界”,因为此时系统对外部干扰非常敏感:整个群体将对这种干扰做出反应,产生大的、大距离的变化。当然,这些令人惊讶的集体行为导致了许多有趣的物理现象,例如近藤云的形成,它改变了带有磁性杂质的金属的导电性能。将宏观经济学中个体的突现行为联系起来也是很诱人的,并且有望在未来取得丰硕成果:一次小型的次贷市场崩溃给我们带来了一场国际衰退!物理学家基于物理原理提出了一个非常强大的理论,描述了关键系统中的突现行为。这就是量子场论。事实上,二十世纪理论物理学的伟大成就之一就是认识到当今实验中观察到的所有基本粒子都可以被理解为来自一个更简单、更对称的理论:这就是量子场论的标准模型。然后,我们对这种涌现行为有了理解,但这种理解还没有形成数学上连贯的整体,也不是对涌现集体本身的完整理解。我们通过量子粒子及其如何散射、通过能量及其局部变化、通过局部探针及其对局部扰动的反应来了解涌现行为。但我们常常不知道如何将这些不同的想法联系起来,以及如何将它们与波动的新兴成分集合联系起来,并实际描述它们。共形场论是量子场论的一系列模型,其中我们上面列举的理解的标准要素得到了更好的发展和相互联系。它们对应于量子场论的一个小但非常有启发性的角落。大约三年前,数学家提出了一系列数学测量,这些测量被认为(有时被证明)是为了描述关键系统中长距离行为的某些方面,这些方面属于共形场论所描述的角落。在一些作品中,我最近强调,这些措施实际上准确地描述了那个角落里所有出现的波动物体,至少对于一系列模型来说是这样。我的研究在于使用这些数学措施,以便将新兴集体与共形场论的强大结构充分连接起来。这将使我们对新兴物体的行为方式有一个全新的认识,并将首次提供从底层多成分系统到量子场论的完整路径。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random loops and conformal field theory
随机环和共形场论
- DOI:10.48550/arxiv.1402.2432
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Doyon B
- 通讯作者:Doyon B
Hypotrochoids in conformal restriction systems and Virasoro descendants
适形限制系统中的下摆轮线和 Virasoro 后代
- DOI:10.48550/arxiv.1209.4860
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Doyon B
- 通讯作者:Doyon B
Monte Carlo method for critical systems in infinite volume: The planar Ising model.
无限体积临界系统的蒙特卡罗方法:平面伊辛模型。
- DOI:10.1103/physreve.94.043322
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Herdeiro V
- 通讯作者:Herdeiro V
A Monte Carlo method for critical systems in infinite volume: the planar Ising model
无限体积临界系统的蒙特卡罗方法:平面伊辛模型
- DOI:10.48550/arxiv.1605.05350
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Herdeiro V
- 通讯作者:Herdeiro V
Higher conformal variations and the Virasoro vertex operator algebra
更高的共形变体和 Virasoro 顶点算子代数
- DOI:10.48550/arxiv.1110.1507
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Doyon Benjamin
- 通讯作者:Doyon Benjamin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Doyon其他文献
一般化流体力学(GHD)で記述される系の大偏差
广义流体动力学 (GHD) 描述的系统的大偏差
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
笹本 智弘;Benjamin Doyon;吉村賢人 - 通讯作者:
吉村賢人
Bi-partite entanglement entropy in integrable models with backscattering
反向散射可积模型中的二分纠缠熵
- DOI:
10.1088/1751-8113/41/27/275203 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
O. Castro;Benjamin Doyon - 通讯作者:
Benjamin Doyon
Skew RSK, affine crystal and KPZ
偏斜 RSK、仿射晶体和 KPZ
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
笹本 智弘;Benjamin Doyon;吉村賢人;笹本 智弘 - 通讯作者:
笹本 智弘
Nonlinear fluctuating hydrodynamics for stochastic interacting particle systems
随机相互作用粒子系统的非线性脉动流体动力学
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
笹本 智弘;Benjamin Doyon;吉村賢人;笹本 智弘;Tomohiro Sasamoto - 通讯作者:
Tomohiro Sasamoto
A new quadrature for the generalized hydrodynamics equation and absence of shocks in the Lieb-Liniger model
广义流体动力学方程的新求积和 Lieb-Liniger 模型中无冲击的情况
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Friedrich Hubner;Benjamin Doyon - 通讯作者:
Benjamin Doyon
Benjamin Doyon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Doyon', 18)}}的其他基金
Fluctuations and correlations at large scales from emergent hydrodynamics: integrable systems and beyond
新兴流体动力学中的大规模波动和相关性:可积系统及其他
- 批准号:
EP/W010194/1 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Research Grant
Emergence of hydrodynamics in many-body systems: new rigorous avenues from functional analysis
多体系统中流体动力学的出现:功能分析的新严格途径
- 批准号:
EP/W000458/1 - 财政年份:2021
- 资助金额:
$ 12.66万 - 项目类别:
Research Grant
Entanglement Measures, Twist Fields, and Partition Functions in Quantum Field Theory
量子场论中的纠缠测度、扭曲场和配分函数
- 批准号:
EP/P006132/1 - 财政年份:2016
- 资助金额:
$ 12.66万 - 项目类别:
Research Grant
Workshop on Entanglement Entropy in Many Body Quantum Systems
多体量子系统中的纠缠熵研讨会
- 批准号:
EP/L027399/1 - 财政年份:2014
- 资助金额:
$ 12.66万 - 项目类别:
Research Grant
相似国自然基金
circMAP3K5结合cGAS/DDX1解旋R-loop促进头颈鳞癌免疫逃逸的机制研究
- 批准号:2025JJ50544
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
LARP4通过去泛素化修饰DDX3X调控 R-LOOP形成抑制肾透明细胞癌转移的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
药物靶向β-catenin相分离调控肿瘤激
活型Loop Hubs抑制结直肠癌
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
靶向 FAM170A 相分离调控 R-loop 积聚增敏前列腺癌阿帕他胺治疗疗效的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于R-loop调控基因的结直肠癌患者预后预测模型的构建
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
N-乙酰转移酶10通过调控肾细胞癌中R-loop的稳定性促进其进展的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
靶向BGUS-Loop1结构域的新型抑制剂设计与缓解伊立替康诱导的药
源性肠毒性研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
DHX8 介导的R-loop 代谢调控及其在卵巢癌发生发展中的作用研究
- 批准号:
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
GH10家族木聚糖酶loop3双正向调控酶热稳定性与催化效率
的分子机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
- 批准号:32360143
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
- 批准号:
2336525 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
- 批准号:
2321862 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Cooperative Agreement
Mechanisms for the propagation of R-loop induced chromosomal fragments in the germline
R环诱导染色体片段在种系中的繁殖机制
- 批准号:
2341479 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
CAREER: Dynamic dissection of how transcription and loop extrusion regulate 3D genome structure
职业:动态剖析转录和环挤出如何调节 3D 基因组结构
- 批准号:
2337728 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant
Sustainable Sludge Valorisation Technology for Closed-Loop Resource Recovery
用于闭环资源回收的可持续污泥增值技术
- 批准号:
EP/Y02480X/1 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Research Grant
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant














{{item.name}}会员




