Workshop on Entanglement Entropy in Many Body Quantum Systems

多体量子系统中的纠缠熵研讨会

基本信息

  • 批准号:
    EP/L027399/1
  • 负责人:
  • 金额:
    $ 1.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Quantum mechanics has very intriguing features. One of them is that we just cannot know all physical properties of any system for sure - there is always some fundamental uncertainty. Wherefore with quantum mechanics, we only predict probabilities of measurements. Another intriguing feature is that what we thought were particles sometimes behave like waves, and what we thought were waves sometimes behave like particles. Electrons will show interference patterns, as if there was a "probability wave".But perhaps the most intriguing, and arguable the most "quantum" of all features, is quantum entanglement. This is the single property that displays most clearly the dichotomy between the description as particles with probabilities, and as waves with interference. Entanglement was famously referred to as "spooky action at a distance" by Einstein, and led to what is still known as the Einstein-Podolsky-Rosen "paradox". In simple terms, it says that, according to the rules of quantum mechanics, if two particles (or two quantum systems of any kind) are entangled, then a measurement on one particle will instantaneously affect the actual physical state of the other particle. This is spooky because entanglement can in principle exist between particles that are as far as we want from each other: for instance, pairs of particles spontaneously created at some point and traveling in opposite directions. Something happening here on one of these particles can affect instantaneously the state of the other while it's on the other side of the galaxy!Entanglement has led to many interpretative issues in quantum mechanics, especially with respect to the principle of locality that was so dear to Einstein (no information can travel faster than the speed of light), and work as been done beyond the Copenhagen interpretation we implicitly referred to here. Perhaps most interestingly, however, as Feynman envisioned, quantum mechanics, and in particular quantum entanglement, led to a revolution in information and computing science. Quantum entanglement, this very quantum correlation between particles, is nowadays perceived as a resource, and gives rise to algorithm that are exponentially faster than their classical counterpart, like Shor's algorithm for prime factorization of large numbers; this may have very deep technological implications.In recent years, the quantum information viewpoint led to an unexpected direction: quantum entanglement, it turns out, is also at the basis of many phenomena of theoretical physics that occur when many particles interact with each other. These many-body "emergent" phenomena are some of the most interesting and complex in theoretical physics, and have been known and studied for a long time; one of the most well-known being the Kondo effect, by which magnetic impurities in metals drastically affect its conductivity at very small temperatures. In the quantum entanglement viewpoint, this is simply because of the strong entanglement between metallic electrons and the magnetic impurities. Studying entanglement in many-body systems has led to surprising realizations, has challenged what we thought we understood about many-body systems, and has led to new methods, new theoretical frameworks and even new classes of many-body behaviours. This is a very active research area, with theoretical, numerical and potentially technological implications.This workshop will bring together the leading researchers worldwide in the area of quantum entanglement in many-body systems, with an emphasis on, but not restricted to, the entanglement entropy, a mathematical characterization of entanglement which has found deep underpinning in many-body systems. The workshop will provide the most recent research in the area, and will be a platform for determining and disseminating the important problems and ideas to be developed in the near future.
量子力学有非常有趣的特点。其中之一就是我们不可能确切地知道任何系统的所有物理性质——总会有一些基本的不确定性。因此,在量子力学中,我们只能预测测量的概率。另一个有趣的特征是,我们认为是粒子的东西有时表现得像波,而我们认为是波的东西有时表现得像粒子。电子将显示干涉模式,就好像有一个“概率波”。但也许所有特征中最有趣、最具争议性的“量子”是量子纠缠。这是最清楚地显示描述为具有概率的粒子和具有干涉的波之间的二分法的唯一性质。爱因斯坦将纠缠称为“幽灵般的超距作用”,并由此引发了至今仍为人所知的爱因斯坦-波多尔斯基-罗森“悖论”。简单来说,它是说,根据量子力学的规则,如果两个粒子(或任何类型的两个量子系统)纠缠在一起,那么对一个粒子的测量将立即影响另一个粒子的实际物理状态。这是令人毛骨悚然的,因为原则上,纠缠可以存在于我们想要的距离最远的粒子之间:例如,在某一点上自发产生的粒子对,它们朝相反的方向运动。当其中一个粒子在星系的另一边时,它身上发生的事情可以瞬间影响到另一个粒子的状态!纠缠导致了量子力学中的许多解释性问题,特别是关于爱因斯坦如此珍贵的局部性原则(没有信息可以比光速传播得更快),以及我们在这里隐含提到的哥本哈根解释之外所做的工作。然而,也许最有趣的是,正如费曼所设想的那样,量子力学,特别是量子纠缠,导致了信息和计算科学的一场革命。量子纠缠,这种粒子之间的量子关联,现在被认为是一种资源,并产生了比经典算法快得多的算法,比如肖尔的大数质因数分解算法;这可能具有非常深刻的技术含义。近年来,量子信息的观点带来了一个意想不到的方向:事实证明,量子纠缠也是许多粒子相互作用时发生的理论物理现象的基础。这些多体“涌现”现象是理论物理学中最有趣和最复杂的现象之一,人们已经知道和研究了很长时间;其中最著名的是近藤效应,即金属中的磁性杂质在非常小的温度下会极大地影响其导电性。从量子纠缠的观点来看,这仅仅是因为金属电子与磁性杂质之间的强纠缠。研究多体系统中的纠缠已经带来了令人惊讶的认识,挑战了我们对多体系统的理解,并导致了新的方法,新的理论框架,甚至是新的多体行为类别。这是一个非常活跃的研究领域,具有理论、数值和潜在的技术意义。本次研讨会将汇集多体系统中量子纠缠领域的全球领先研究人员,重点关注但不限于纠缠熵,纠缠熵是在多体系统中发现的深基础的纠缠的数学表征。讲习班将提供该领域的最新研究成果,并将成为确定和传播在不久的将来将要发展的重要问题和想法的平台。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entanglement negativity and entropy in non-equilibrium conformal field theory
非平衡共形场论中的纠缠负性和熵
  • DOI:
    10.1016/j.nuclphysb.2015.06.021
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Hoogeveen M
  • 通讯作者:
    Hoogeveen M
Entanglement entropy of non-unitary conformal field theory
Universal scaling of the logarithmic negativity in massive quantum field theory
大规模量子场论中对数负性的通用标度
  • DOI:
    10.1088/1751-8113/49/12/125401
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blondeau-Fournier O
  • 通讯作者:
    Blondeau-Fournier O
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Doyon其他文献

一般化流体力学(GHD)で記述される系の大偏差
广义流体动力学 (GHD) 描述的系统的大偏差
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    笹本 智弘;Benjamin Doyon;吉村賢人
  • 通讯作者:
    吉村賢人
Bi-partite entanglement entropy in integrable models with backscattering
反向散射可积模型中的二分纠缠熵
Skew RSK, affine crystal and KPZ
偏斜 RSK、仿射晶体和 KPZ
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    笹本 智弘;Benjamin Doyon;吉村賢人;笹本 智弘
  • 通讯作者:
    笹本 智弘
Nonlinear fluctuating hydrodynamics for stochastic interacting particle systems
随机相互作用粒子系统的非线性脉动流体动力学
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    笹本 智弘;Benjamin Doyon;吉村賢人;笹本 智弘;Tomohiro Sasamoto
  • 通讯作者:
    Tomohiro Sasamoto
A new quadrature for the generalized hydrodynamics equation and absence of shocks in the Lieb-Liniger model
广义流体动力学方程的新求积和 Lieb-Liniger 模型中无冲击的情况
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Friedrich Hubner;Benjamin Doyon
  • 通讯作者:
    Benjamin Doyon

Benjamin Doyon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Doyon', 18)}}的其他基金

Fluctuations and correlations at large scales from emergent hydrodynamics: integrable systems and beyond
新兴流体动力学中的大规模波动和相关性:可积系统及其他
  • 批准号:
    EP/W010194/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Research Grant
Emergence of hydrodynamics in many-body systems: new rigorous avenues from functional analysis
多体系统中流体动力学的出现:功能分析的新严格途径
  • 批准号:
    EP/W000458/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Research Grant
Entanglement Measures, Twist Fields, and Partition Functions in Quantum Field Theory
量子场论中的纠缠测度、扭曲场和配分函数
  • 批准号:
    EP/P006132/1
  • 财政年份:
    2016
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Research Grant
From conformal loop ensembles to conformal field theory
从共形环系综到共形场论
  • 批准号:
    EP/H051619/1
  • 财政年份:
    2010
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Research Grant

相似海外基金

Study of hadron structures based on entanglement entropy
基于纠缠熵的强子结构研究
  • 批准号:
    22K03608
  • 财政年份:
    2022
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Time dependence of entanglement entropy in the disordered Hubbard model
无序哈伯德模型中纠缠熵的时间依赖性
  • 批准号:
    564789-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Entanglement Entropy Maximization With Constraints on Stress-Energy Tensor Components
应力能量张量分量约束下的纠缠熵最大化
  • 批准号:
    553430-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Time dependence of entanglement entropy in the disordered Hubbard model
无序哈伯德模型中纠缠熵的时间依赖性
  • 批准号:
    541458-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Time evolution of entanglement entropy in disordered interacting systems
无序相互作用系统中纠缠熵的时间演化
  • 批准号:
    510319-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Studies of AdS/CFT via Entanglement Entropy
通过纠缠熵研究 AdS/CFT
  • 批准号:
    16H02182
  • 财政年份:
    2016
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Aspects of entanglement entropy in quantum field theories
量子场论中纠缠熵的各个方面
  • 批准号:
    15K17628
  • 财政年份:
    2015
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Measuring Topological Entanglement Entropy with Quantum Monte Carlo
用量子蒙特卡罗测量拓扑纠缠熵
  • 批准号:
    425093-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mutual entropy of entanglement quantum channels and the basis of formulation of the quantum coding theorem
纠缠量子通道的互熵和量子编码定理的表述基础
  • 批准号:
    15K04983
  • 财政年份:
    2015
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotics of products of spectral projections with applications to Anderson's orthogonality and entanglement entropy
谱投影乘积的渐近及其在安德森正交性和纠缠熵中的应用
  • 批准号:
    308446886
  • 财政年份:
    2015
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了