Computer aided diagnosis of neurological damage to improve care for infants born prematurely
计算机辅助诊断神经损伤以改善对早产儿的护理
基本信息
- 批准号:EP/I000445/1
- 负责人:
- 金额:$ 130.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Preterm birth is a major cause of neuropsychiatric impairment in childhood and leads to significant long-term clinical, educational and social problems. The incidence of preterm birth and low birth weight has increased over the last decade in industrialised countries, and preterm delivery has a higher prevalence among the unemployed and poorly educated. The burden of impairment is considerable: about 10% of all infants born before 33 weeks of age develop cerebral palsy; over 30% have neurocognitive problems; and half of all surviving infants born at 25 weeks or less show neurodevelopmental impairment at 30 months of age. These problems persist into later life which can have devastating consequences for the individuals and their families. A major issue confronting clinicians who work with preterm infants and their families is the identification of infants who are most at risk for subsequent neurodevelopmental disability and who may benefit from early intervention services. Improved prediction of later handicaps has the potential immediately to improve the delivery of care for preterm infants and their families. At the same time, the improved diagnosis will also aid the growing search for specific treatments to reduce brain injury. Several promising approaches are under active investigation, all of which rely or would be aided by improved diagnosis of adverse outcomes. Currently, the early assessment of brain development in preterm infants and prognosis of outcome is heavily dependent on a subjective assessment of clinical and low resolution imaging data. The aim of this project is the creation of tools and algorithms that enable the detection and diagnosis of abnormal brain development based on high-resolution magnetic resonance imaging (MRI) information. By interpreting these images within an evidence-based statistical framework, a more complete and objective, evidence-based interpretation will be possible. The project will combine two emerging paradigms in computer and imaging science to address the challenge of identifying abnormal brain development and predicting outcome: Machine learning techniques and computational anatomy. In combination these approaches have the potential to provide useful and descriptive models of the underlying anatomy that can be used for comparisons across subjects and over time. This offers the possibility to learn patterns of normal and abnormal brain development and to predict the pattern of future brain development. The result of the research will be a significantly improved ability to predict neurodevelopmental outcome in later life. The ability to predict outcome improves parental counseling and selection of infants for early therapeutic strategies aiming at preventing or ameliorating cerebral injury.
早产是儿童期神经精神损害的主要原因,并导致重大的长期临床、教育和社会问题。在过去十年中,工业化国家早产和低出生体重的发生率有所增加,早产在失业和受教育程度低的人群中更普遍。损伤的负担相当大:33周前出生的所有婴儿中,约有10%患有脑瘫;超过30%的婴儿存在神经认知问题; 25周或以下出生的所有存活婴儿中,有一半在30个月大时表现出神经发育障碍。这些问题持续到晚年,可能对个人及其家庭造成破坏性后果。临床医生面临的一个主要问题是谁的工作与早产儿和他们的家庭是识别婴儿谁是最有风险的后续神经发育障碍,谁可能受益于早期干预服务。改善对后期障碍的预测有可能立即改善对早产儿及其家庭的护理。同时,改进的诊断也将有助于寻找减少脑损伤的特定治疗方法。几种有前途的方法正在积极研究中,所有这些方法都依赖于或将有助于改善不良结局的诊断。目前,早产儿脑发育的早期评估和预后结果严重依赖于临床和低分辨率成像数据的主观评估。该项目的目的是创建工具和算法,以便基于高分辨率磁共振成像(MRI)信息检测和诊断异常大脑发育。通过在基于证据的统计框架内解释这些图像,将有可能进行更完整和客观的基于证据的解释。该项目将联合收割机结合计算机和成像科学中的两种新兴范式,以应对识别异常大脑发育和预测结果的挑战:机器学习技术和计算解剖学。结合这些方法,有可能提供有用的和描述性的模型,可用于比较跨学科和随着时间的推移的基础解剖结构。这提供了学习正常和异常大脑发育模式并预测未来大脑发育模式的可能性。这项研究的结果将显著提高预测晚年神经发育结果的能力。预测结果的能力改善了父母的咨询和选择婴儿的早期治疗策略,旨在预防或改善脑损伤。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regional growth and atlasing of the developing human brain.
- DOI:10.1016/j.neuroimage.2015.10.047
- 发表时间:2016-01-15
- 期刊:
- 影响因子:5.7
- 作者:Makropoulos A;Aljabar P;Wright R;Hüning B;Merchant N;Arichi T;Tusor N;Hajnal JV;Edwards AD;Counsell SJ;Rueckert D
- 通讯作者:Rueckert D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Rueckert其他文献
《六祖壇経》成書的新見解 ──敦煌本《壇経》中所見三階教的影響及其意義
六祖坛经成文新观──敦煌本坛经三经教义的影响与意义
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Masahiro Oda;Natsuki Shimizu;Holger R. Roth;Ken’ichi Karasawa;Takayuki Kitasaka;Kazunari Misawa;Michitaka Fujiwara;Daniel Rueckert;Kensaku Mori;川端 康雄;塚本麿充;Katsuhiko TAKIZAWA;村田雄二郎;伊吹敦 - 通讯作者:
伊吹敦
Machine Learning Techniques for Automated Accurate Organ Segmentation and Their Applications to Diagnosis Assistance
自动准确器官分割的机器学习技术及其在辅助诊断中的应用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Masahiro Oda;Natsuki Shimizu;Holger R. Roth;Takayuki Kitasaka;Kazunari Misawa;Kensaku Mori;Michitaka Fujiwara;Daniel Rueckert - 通讯作者:
Daniel Rueckert
医療分野における3Dプリンタの応用の現状
3D打印机在医疗领域的应用现状
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Masahiro Oda;Natsuki Shimizu;Kenichi Karasawa;Yukitaka Nimura;Takayuki Kitasaka;Kazunari Misawa;Michitaka Fujiwara;Daniel Rueckert;and Kensaku Mori;森 健策 - 通讯作者:
森 健策
重みつき尤度マップを用いた三次元腹部 CT 像からの複数臓器抽出手法に関する研究
基于加权似然图的3D腹部CT图像多器官提取方法研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
チョ 成文;小田 昌宏;北坂 孝幸;三澤 一成;藤原 道隆;林 雄一郎;Robin Wolz;Daniel Rueckert;森 健策 - 通讯作者:
森 健策
Neural network surrogate and projected gradient descent for fast and reliable finite element model calibration: A case study on an intervertebral disc
用于快速可靠有限元模型校准的神经网络代理和投影梯度下降法:以椎间盘为例的案例研究
- DOI:
10.1016/j.compbiomed.2024.109646 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.300
- 作者:
Matan Atad;Gabriel Gruber;Marx Ribeiro;Luis Fernando Nicolini;Robert Graf;Hendrik Möller;Kati Nispel;Ivan Ezhov;Daniel Rueckert;Jan S. Kirschke - 通讯作者:
Jan S. Kirschke
Daniel Rueckert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Rueckert', 18)}}的其他基金
Efficient and Robust Assessment of Cardiovascular Disease Using Machine Learning and Ultrasound Imaging
利用机器学习和超声成像对心血管疾病进行高效、稳健的评估
- 批准号:
EP/R005982/1 - 财政年份:2018
- 资助金额:
$ 130.41万 - 项目类别:
Research Grant
SmartHeart: Next-generation cardiovascular healthcare via integrated image acquisition, reconstruction, analysis and learning
SmartHeart:通过集成图像采集、重建、分析和学习实现下一代心血管保健
- 批准号:
EP/P001009/1 - 财政年份:2016
- 资助金额:
$ 130.41万 - 项目类别:
Research Grant
Using Machine Learning to Identify Noninvasive Motion-Based Biomarkers of Cardiac Function
使用机器学习识别心脏功能的无创基于运动的生物标志物
- 批准号:
EP/K030523/1 - 财政年份:2013
- 资助金额:
$ 130.41万 - 项目类别:
Research Grant
Biomedical Catalyst – Digital Healthcare Platform for Early Dementia Diagnosis
生物医学催化剂 — 痴呆症早期诊断数字医疗平台
- 批准号:
MC_PC_13034 - 财政年份:2012
- 资助金额:
$ 130.41万 - 项目类别:
Research Grant
Computational Morphometry of the Developing Cortex
发育中皮层的计算形态测量
- 批准号:
EP/F011830/1 - 财政年份:2008
- 资助金额:
$ 130.41万 - 项目类别:
Research Grant
Model-based 2D-3D registration and tracking of deformable objects for image-guided minimally invasive cardiac interventions
基于模型的 2D-3D 配准和可变形物体跟踪,用于图像引导的微创心脏介入治疗
- 批准号:
EP/C523008/1 - 财政年份:2006
- 资助金额:
$ 130.41万 - 项目类别:
Research Grant
相似国自然基金
基于磷酸二酯酶IV结构的抑制剂的设计与动态组合合成
- 批准号:30500633
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 130.41万 - 项目类别:
Assessment of a Radiomics-Based Computer-Aided Diagnosis Tool for Cancer Risk Stratification of Pulmonary Nodules
基于放射组学的计算机辅助诊断工具对肺结节癌症风险分层的评估
- 批准号:
10644765 - 财政年份:2023
- 资助金额:
$ 130.41万 - 项目类别:
A study of computer aided diagnosis system of cervical cytology using deep learning.
基于深度学习的宫颈细胞学计算机辅助诊断系统的研究
- 批准号:
23K08849 - 财政年份:2023
- 资助金额:
$ 130.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and sophistication of computer-aided diagnosis software based on the diagnostic imaging procedure of doctors
基于医生诊断成像流程的计算机辅助诊断软件的开发和完善
- 批准号:
22K15877 - 财政年份:2022
- 资助金额:
$ 130.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
[R21] Integrated computer-aided, point-of-care ultrasound for tuberculosis screening
[R21] 用于结核病筛查的集成计算机辅助床旁超声
- 批准号:
10511853 - 财政年份:2022
- 资助金额:
$ 130.41万 - 项目类别:
Development of Artificial Intelligence-Based Approaches for Computer-Aided Management of Colorectal Polyps
基于人工智能的结直肠息肉计算机辅助管理方法的开发
- 批准号:
10479308 - 财政年份:2022
- 资助金额:
$ 130.41万 - 项目类别:
Interpretability and Fairness in Deep Learning for Computer-Aided Diagnosis
计算机辅助诊断深度学习的可解释性和公平性
- 批准号:
575945-2022 - 财政年份:2022
- 资助金额:
$ 130.41万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Image Analysis and Machine Learning Techniques for Computer-aided Diagnosis
用于计算机辅助诊断的图像分析和机器学习技术
- 批准号:
RGPIN-2020-05873 - 财政年份:2022
- 资助金额:
$ 130.41万 - 项目类别:
Discovery Grants Program - Individual
[R21] Integrated computer-aided, point-of-care ultrasound for tuberculosis screening
[R21] 用于结核病筛查的集成计算机辅助床旁超声
- 批准号:
10647808 - 财政年份:2022
- 资助金额:
$ 130.41万 - 项目类别:
Personalized Management of Intracranial Aneurysms Using Computer-aided Analytics
使用计算机辅助分析对颅内动脉瘤进行个性化管理
- 批准号:
10383658 - 财政年份:2021
- 资助金额:
$ 130.41万 - 项目类别: