Tensorial modeling of dynamical systems for gait and activity recognition
用于步态和活动识别的动态系统张量建模
基本信息
- 批准号:EP/I018719/1
- 负责人:
- 金额:$ 12.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biometrics such as face, iris, or fingerprint recognition have received growing attention in the last decade, as automatic identification systems for surveillance and security have started to enjoy widespread diffusion. They suffer, however, from two major limitations: they cannot be used at a distance, and require user cooperation, assumptions impractical in real-world scenarios. Interestingly, psychological studies show that people are capable of recognizing their friends just from the way they walk, even when their gait is poorly represented by point light display. Gait has several advantages over other biometrics, as it can be measured at a distance, is difficult to disguise or occlude, can be identified even in low-resolution images, and is non-cooperative in nature. Furthermore, gait and face biometrics can be easily integrated for human identity recognition.Despite its attractive features, though, gait identification is still far from being ready to be deployed in practice. What limits its adoption in real-world scenarios is the influence of a large number of nuisance factors which affect appearance and dynamics of the gait. These include, for instance: walking surface, lighting, camera setup (viewpoint), but also footwear and clothing, objects carried, time of execution, walking speed. Similar issues are shared by other applications of motion classification, such as action and activity recognition. Multilinear or tensorial models, in which a number of (nuisance) factors linearly mix to generate what we observe (in our case the walking gait), have been proven in the recent past to be able to describe the influence of such factors, for instance in the context of face recognition. However, video sequences are more complex objects than single images. We first need to represent video footages in a compact way.Encoding the dynamics of videos by means of some sort of dynamical model has been proven effective in both action recognition and gait identification, in situations in which the dynamics is critically discriminative. Besides, the actions of interest have to be temporally segmented from a video sequence, while actions of sometimes very different lengths might have to be compared. Dynamical representations are very effective in coping with temporal detection and compression, and indeed several researchers have explored the idea of encoding motions via linear, nonlinear, stochastic or chaotic dynamical systems.In this project, therefore, we propose to develop a novel, general framework for the classification of video sequences (with a focus on the walking gait), based on the application of tensorial decomposition techniques to image sequences represented as realizations of suitable dynamical models.The proposed framework will allow us to deal with the issue of the nuisance factors which greatly affect identification from gait and activity recognition in a principled way. The main goal is to push towards a more widespread diffusion of gait ID, as a concrete contribution to enhancing the security levels in the country in the current, uncertain scenarios. With their implications for crime prevention and security, biometrics and surveillance are fast growing business areas, a fact reflected by the increasing number of government-sponsored initiatives in the area in most advanced economies. In addition, the techniques devised in this proposal are extendable to action and identity recognition with immense commercial exploitation potential, ranging from content-based video retrieval from repositories such as YouTube, to HMI, to interactive video games, etcetera.
随着用于监控和安全的自动识别系统开始广泛普及,面部、虹膜或指纹识别等生物识别技术在过去十年中受到越来越多的关注。然而,它们有两个主要限制:它们不能远距离使用,并且需要用户合作,这些假设在现实场景中不切实际。有趣的是,心理学研究表明,即使点光源显示无法很好地体现他们的步态,人们也能够仅通过他们走路的方式来识别他们的朋友。与其他生物识别技术相比,步态有几个优点,因为它可以远距离测量,难以伪装或遮挡,即使在低分辨率图像中也可以识别,并且本质上是非合作的。此外,步态和面部生物识别技术可以轻松集成以进行人类身份识别。尽管步态识别具有吸引人的功能,但它还远未准备好在实践中部署。限制其在现实场景中采用的是大量影响步态外观和动态的干扰因素的影响。例如,这些包括:行走表面、照明、摄像机设置(视点),还包括鞋类和服装、携带的物品、执行时间、行走速度。运动分类的其他应用也存在类似的问题,例如动作和活动识别。多线性或张量模型,其中许多(讨厌的)因素线性混合以生成我们所观察到的(在我们的例子中是步行步态),最近已被证明能够描述这些因素的影响,例如在人脸识别的背景下。然而,视频序列是比单个图像更复杂的对象。我们首先需要以紧凑的方式表示视频片段。在动态具有严格判别性的情况下,通过某种动态模型对视频动态进行编码已被证明在动作识别和步态识别中都是有效的。此外,感兴趣的动作必须在时间上从视频序列中分段,而有时可能必须比较长度非常不同的动作。动态表示在处理时间检测和压缩方面非常有效,实际上,一些研究人员已经探索了通过线性、非线性、随机或混沌动态系统对运动进行编码的想法。因此,在这个项目中,我们建议开发一种新颖的、通用的视频序列分类框架(重点关注步行步态),基于张量分解技术对表示为适当动态实现的图像序列的应用。 所提出的框架将使我们能够以原则性的方式处理极大影响步态和活动识别识别的干扰因素问题。主要目标是推动步态 ID 的更广泛传播,为在当前不确定的情况下提高该国的安全水平做出具体贡献。由于生物识别和监控对犯罪预防和安全的影响,生物识别和监控成为快速增长的业务领域,大多数发达经济体中越来越多的政府资助该领域的举措就反映了这一事实。此外,该提案中设计的技术可扩展到具有巨大商业开发潜力的动作和身份识别,范围从基于内容的视频检索(从 YouTube 等存储库到 HMI,再到交互式视频游戏等)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online Action Recognition via Nonparametric Incremental Learning
- DOI:10.5244/c.28.113
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:R. D. Rosa;Nicolò Cesa-Bianchi;I. Gori;Fabio Cuzzolin
- 通讯作者:R. D. Rosa;Nicolò Cesa-Bianchi;I. Gori;Fabio Cuzzolin
Belief modeling regression for pose estimation
用于姿态估计的置信建模回归
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Fabio Cuzzolin (Author)
- 通讯作者:Fabio Cuzzolin (Author)
Robust classification of multivariate time series by imprecise hidden Markov models
- DOI:10.1016/j.ijar.2014.07.005
- 发表时间:2015-01-01
- 期刊:
- 影响因子:3.9
- 作者:Antonucci, Alessandro;De Rosa, Rocco;Cuzzolin, Fabio
- 通讯作者:Cuzzolin, Fabio
Active Incremental Recognition of Human Activities in a Streaming Context
- DOI:10.1016/j.patrec.2017.03.005
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:R. D. Rosa;I. Gori;Fabio Cuzzolin;Nicolò Cesa-Bianchi
- 通讯作者:R. D. Rosa;I. Gori;Fabio Cuzzolin;Nicolò Cesa-Bianchi
Learning discriminative space-time actions from weakly labelled videos
- DOI:10.5244/c.26.123
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Michael Sapienza;Fabio Cuzzolin;Philip H. S. Torr
- 通讯作者:Michael Sapienza;Fabio Cuzzolin;Philip H. S. Torr
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fabio Cuzzolin其他文献
Tensorial modeling of dynamical systems for gait and activity recognition Dr
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3.2
- 作者:
Fabio Cuzzolin - 通讯作者:
Fabio Cuzzolin
Spatio-Temporal Action Localization in a Weakly Supervised Setting
弱监督环境下的时空动作定位
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
K. Degiorgio;Fabio Cuzzolin - 通讯作者:
Fabio Cuzzolin
Spatio-Temporal Action Instance Segmentation and Localisation
时空动作实例分割和定位
- DOI:
10.1007/978-3-030-46732-6_8 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Suman Saha;Gurkirt Singh;Michael Sapienza;Philip H. S. Torr;Fabio Cuzzolin - 通讯作者:
Fabio Cuzzolin
A Lattice-Theoretic Interpretation of Independence of Frames
框架独立性的格论解释
- DOI:
10.1007/978-3-540-77664-2_17 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Fabio Cuzzolin - 通讯作者:
Fabio Cuzzolin
Fabio Cuzzolin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
ABM有效性检验的关键技术研究
- 批准号:70701001
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 12.53万 - 项目类别:
Continuing Grant
Making Upper Division Mathematics Courses More Relevant for Future High School Teachers: The Case of Inquiry-Oriented Dynamical Systems and Modeling
使高年级数学课程与未来高中教师更相关:以探究为导向的动力系统和建模案例
- 批准号:
2337047 - 财政年份:2024
- 资助金额:
$ 12.53万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 12.53万 - 项目类别:
Continuing Grant
Dynamical maintenance of left-right symmetry during vertebrate development
脊椎动物发育过程中左右对称的动态维持
- 批准号:
10797382 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
- 批准号:
10709399 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Chromatin regulators of stemness and therapy resistance in rhabdomyosarcoma
横纹肌肉瘤干性和治疗耐药性的染色质调节因子
- 批准号:
10622041 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
CAREER: Frailty Assessment for Older Adults with Walking Disabilities using Dynamical Modeling of Cardiac, Brain, and Motor Systems in Response to Provocative Testing
职业:使用心脏、大脑和运动系统的动态模型来响应激发测试,对患有步行障碍的老年人进行虚弱评估
- 批准号:
2402238 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Continuing Grant














{{item.name}}会员




