Battery/Supercapacitor Hybrids for Transport Energy Storage

用于运输储能的电池/超级电容器混合动力

基本信息

  • 批准号:
    EP/I02123X/1
  • 负责人:
  • 金额:
    $ 48.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

This proposal seeks a step change in our current knowledge as it pertains to energy storage for the transport sector. As is well known, the transport sector accounts for a quarter of all UK CO2 emissions. Diminishing that burden means improving the way that we build and power vehicles, and also compels us to convert to electrified systems. The final form of an ideal electric vehicle is impossible to predict, but it could well be a hybrid, a plug-in hybrid, or some form of hydrogen powered system.Regardless of the final engineering design, there is a growing conviction among scientists that the best prospect for long-term energy security will emerge from the matrix of possibilities connected with the storage and utlization of energy as electrochemical potential. Indeed, the idea of creating artificial systems to exploit electrochemical potential crops up every time there is an escalation in the price of oil. In our view this is the only possible method of ending the present era of profligate fossil fuel consumption, other than adopting nuclear power on an unprecedented scale. This is a global problem that grows more important on a daily basis, and it will soon become the dominant scientific issue in the world.Artificial methods of storing and/or generating electrochemical potential energy include batteries, fuel cells, supercapacitors, and electrolysis cells. Natural methods of exploiting electrochemical potential include biomass reactors and photosystem II (i.e. photosynthesis in plants and cyanobacteria). Almost incredibly, however, there is a dearth of general theory underpinning the transport and storage of electrical charge in all of these stystems, and there is no known method of optimizing the use of such systems on a local or global scale. Accordingly, in the current proposal, we seek to develop such theory independent of microscopic choices of materials and devices. We also intend to explore and develop hybrid battery/supercapacitor technologies suitable for electric vehicle use. Ultimately, we envision a hybrid battery/supercapacitor design that is cost-effective, safe, and scalable. At the same time, the requisite skills in both science and engineering will be passed along to a new generation of researchers.The proposed project involves the co-operation of the disciplines of Chemistry and Automotive Engineering. Under Chemistry, the activities will involve the development of room temperature ionic liquids as electrolytes for battery supercapacitor hybrid devices (BSHDs), and the trialling of advanced materials (e.g. PVDF-based polymers, porous carbons) and the development of relevant manufacturing methodologies (e.g. screen printing). In addition, the bench-scale testing of BSHD's by electrochemists will be used as part of a factorial design of materials to optimize various battery/supercapacitor designs ahead of scale-up. The BSHD technology coming from Chemistry will then form the basis of research in the Engineering laboratory. From the automotive engineering point of view, the use of BSHDs offers the advantages of batteries, which are relatively high energy density, with the advantages of supercapacitors, which are relatively high power density. We envision that these mutual advantages will be obtainable without any increase in the complexity of the vehicle control system that today accompanies the dual use of battery packs and supercapacitor packs. Finally, a combination of vehicle and BSHD modelling will enable a quantitative evaluation of the vehicle benefits of the BSHD technology. The results will validate the models and increase confidence in the results obtained therefrom.
该提案寻求在我们目前的知识中迈出一步,因为它与运输部门的能源储存有关。众所周知,交通运输部门的二氧化碳排放量占英国总排放量的四分之一。减轻这种负担意味着改进我们制造和驱动汽车的方式,也迫使我们转向电气化系统。理想的电动汽车的最终形式是无法预测的,但它很可能是混合动力车,插电式混合动力车,或某种形式的氢动力系统。无论最终的工程设计如何,科学家们越来越相信,长期能源安全的最佳前景将出现在与能量存储和利用相关的各种可能性中。事实上,每当石油价格上涨时,创造人工系统来利用电化学潜力的想法就会出现。我们认为,除了以前所未有的规模采用核能,这是结束目前这个浪费化石燃料时代的唯一可能方法。这是一个日益重要的全球性问题,它将很快成为世界上主要的科学问题。储存和/或产生电化学势能的人工方法包括电池、燃料电池、超级电容器和电解电池。利用电化学电位的自然方法包括生物质反应器和光系统II(即植物和蓝藻中的光合作用)。然而,几乎令人难以置信的是,在所有这些系统中,缺乏支撑电荷传输和存储的一般理论,也没有已知的方法来优化这些系统在局部或全球范围内的使用。因此,在目前的建议中,我们寻求发展这样的理论独立于材料和设备的微观选择。我们还打算探索和开发适合电动汽车使用的混合电池/超级电容器技术。最终,我们设想一种混合电池/超级电容器设计,具有成本效益,安全性和可扩展性。与此同时,科学和工程方面的必要技能将传给新一代的研究人员。拟议的项目涉及化学和汽车工程学科的合作。在化学方面,活动将涉及开发室温离子液体作为电池超级电容器混合设备(BSHDs)的电解质,以及试验先进材料(例如pvdf基聚合物,多孔碳)和开发相关制造方法(例如丝网印刷)。此外,电化学人员对BSHD的实验规模测试将被用作材料因子设计的一部分,以在大规模生产之前优化各种电池/超级电容器的设计。来自化学的BSHD技术将成为工程实验室研究的基础。从汽车工程的角度来看,bshd的使用既具有电池的优势(能量密度相对较高),又具有超级电容器的优势(功率密度相对较高)。我们设想,这些共同的优势将在不增加车辆控制系统复杂性的情况下实现,目前伴随电池组和超级电容器组的双重使用。最后,车辆和BSHD建模的结合将能够对BSHD技术的车辆效益进行定量评估。结果将验证模型,并增加由此得出的结果的可信度。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum design of ionic liquids for extreme chemical inertness and a new theory of the glass transition
  • DOI:
    10.1007/s10008-012-1974-2
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    S. Fletcher;V. J. Black;I. Kirkpatrick;Thomas S. Varley
  • 通讯作者:
    S. Fletcher;V. J. Black;I. Kirkpatrick;Thomas S. Varley
A universal equivalent circuit for carbon-based supercapacitors
  • DOI:
    10.1007/s10008-013-2328-4
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Fletcher, Stephen;Black, Victoria Jane;Kirkpatrick, Iain
  • 通讯作者:
    Kirkpatrick, Iain
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Fletcher其他文献

Associations between cognitive impairment and patient‐reported measures of physical/mental functioning in older people living with HIV
老年艾滋病毒感染者认知障碍与患者报告的身体/心理功能测量之间的关联
  • DOI:
    10.1111/hiv.12434
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3
  • 作者:
    J. Underwood;D. De Francesco;F. Post;J. Vera;I. Williams;M. Boffito;P. Mallon;J. Anderson;M. Sachikonye;C. Sabin;A. Winston;D. Asboe;Lucy Garvey;Anton Pozniak;Lucy Campbell;S. Yurdakul;Sara Okumu;Louise Pollard;D. Otiko;Laura Phillips;Rosanna Laverick;M. Fisher;Amanda Clarke;A. Bexley;C. Richardson;A. Macken;Bijan Ghavani‐Kia;Joanne Maher;Maria Byrne;Ailbhe Flaherty;S. Mguni;Rebecca Clark;Rhiannon Nevin‐Dolan;Sambasivarao Pelluri;Margaret Johnson;Nnenna Ngwu;Nargis Hemat;Martin Jones;A. Carroll;A. Whitehouse;Laura Burgess;D. Babalis;Matthew Stott;L. McDonald;Chris Higgs;Elisha Seah;Stephen Fletcher;Michelle Anthonipillai;Ashley Moyes;Katie Deats;Irtiza Syed;Clive Matthews
  • 通讯作者:
    Clive Matthews
A non-Marcus model for electrostatic fluctuations in long range electron transfer
Nano-geometry: Spherical or quasi-spherical nanoparticles?
纳米几何形状:球形或准球形纳米粒子?
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Sokolov;Christopher Batchelor‐McAuley;Kristina;Tschulik;Stephen Fletcher;R. Compton
  • 通讯作者:
    R. Compton
The Hamble Estuary Partnership and Solent Forum: Duplication or integration?
  • DOI:
    10.1016/j.marpol.2007.03.007
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephen Fletcher;Emma Beagley;Tracey Hewett;Alan Williams;Karen McHugh
  • 通讯作者:
    Karen McHugh
Obituary: Prof. John O’Mara Bockris (1923–2013)

Stephen Fletcher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Fletcher', 18)}}的其他基金

Solent to Sussex Bay Seascape Restoration Network
索伦特至苏塞克斯湾海景恢复网络
  • 批准号:
    NE/X01648X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Research Grant
A Catalytic Asymmetric Cross-Coupling Approach to the Synthesis of Cyclobutanes
环丁烷合成的催化不对称交叉偶联方法
  • 批准号:
    EP/W007363/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Research Grant
Integrating diverse values into the sustainable management of marine resources in the UK
将多元化价值观融入英国海洋资源的可持续管理
  • 批准号:
    NE/V017497/1
  • 财政年份:
    2021
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Research Grant
Synthesis of Targeted Antiviral Nucleosides
靶向抗病毒核苷的合成
  • 批准号:
    EP/V015087/1
  • 财政年份:
    2020
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Research Grant
Copper and rhodium catalyzed dynamic kinetic asymmetric transformations
铜和铑催化的动态动力学不对称转变
  • 批准号:
    EP/N022246/1
  • 财政年份:
    2016
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Research Grant
Direct observation and characterisation of physical autocatalysis by interferometric scattering microscopy
干涉散射显微镜直接观察和表征物理自催化
  • 批准号:
    EP/M025241/1
  • 财政年份:
    2015
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Research Grant
From nano-movement to macro-work
从纳米运动到宏观工作
  • 批准号:
    EP/M002144/1
  • 财政年份:
    2014
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Research Grant
Do you need a protein for efficient photochemistry?
您需要蛋白质来实现有效的光化学吗?
  • 批准号:
    EP/K006630/1
  • 财政年份:
    2013
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Research Grant
Alkenes as Nucleophiles in Catalytic Asymmetric C-C Bond Formation
烯烃作为催化不对称 C-C 键形成中的亲核试剂
  • 批准号:
    EP/H003711/1
  • 财政年份:
    2009
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Fellowship

相似海外基金

Development of solar-powered supercapacitor devices using tailored composite shared electrode
使用定制复合共享电极开发太阳能超级电容器装置
  • 批准号:
    23KF0185
  • 财政年份:
    2023
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Graphene, MXene and ionic liquid-based sustainable supercapacitor
石墨烯、MXene和离子液体基可持续超级电容器
  • 批准号:
    10061602
  • 财政年份:
    2023
  • 资助金额:
    $ 48.27万
  • 项目类别:
    EU-Funded
Development of novel supercapacitor-battery hybrid systems for renewable energy storage
开发用于可再生能源存储的新型超级电容器-电池混合系统
  • 批准号:
    RGPIN-2022-03562
  • 财政年份:
    2022
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing understanding and improving performance of supercapacitor systems combining carbon and pseudocapacitive materials
增强对碳和赝电容材料相结合的超级电容器系统的理解并提高其性能
  • 批准号:
    547474-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of battery-supercapacitor management systems for electric vehicles
电动汽车电池-超级电容器管理系统的开发
  • 批准号:
    2601057
  • 财政年份:
    2021
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Studentship
Enhancing understanding and improving performance of supercapacitor systems combining carbon and pseudocapacitive materials
增强对碳和赝电容材料相结合的超级电容器系统的理解并提高其性能
  • 批准号:
    547474-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
I-Corps: Fabric Supercapacitor for Solar Energy Storage
I-Corps:用于太阳能存储的织物超级电容器
  • 批准号:
    2113334
  • 财政年份:
    2021
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Standard Grant
Supercapacitor-battery hybrid based on multivalent vanadium for storage of renewable energy
用于存储可再生能源的基于多价钒的超级电容器-电池混合体
  • 批准号:
    567121-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Alliance Grants
Project 105307 G-Cap Supercapacitor in All-Terrain Vehicles COVID-19 Continuity
项目 105307 全地形车辆中的 G-Cap 超级电容器 COVID-19 连续性
  • 批准号:
    72806
  • 财政年份:
    2020
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Feasibility Studies
Investigation of aqueous supercapacitor and capacitive deionisation adsorption mechanisms on activated carbons using NMR spectroscopy
使用核磁共振波谱研究水性超级电容器和活性炭上的电容去离子吸附机制
  • 批准号:
    2903513
  • 财政年份:
    2020
  • 资助金额:
    $ 48.27万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了