Nanoscale Germanium Electronics

纳米级锗电子

基本信息

  • 批准号:
    EP/I02865X/1
  • 负责人:
  • 金额:
    $ 12.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

This proposal is a feasibility study to determine the practicality of fabricating nanoscale electronic devices in germanium, of dimensions ranging from tens of nanometres to the atomic scale. The multi-billion pound semiconductor industry is based on integrated circuits (ICs) fabricated on silicon wafers and has been for the last forty years, with components being made smaller by a factor of two every eighteen months (Moore's Law). However, in recent years, the small size of circuit components has introduced a number of troublesome device performance issues due to quantum effects, such as tunnelling, and the incorporation of germanium into device components is seen as a potential solution. One positive aspect of the above mentioned quantum effects, seen in devices approaching nanoscale dimensions, is that new device paradigms which explicitly exploit quantum mechanics are being explored for future generations of ICs and for quantum information processing (QIP) applications. For example there are interesting proposals to make quantum computers from impurities in germanium or from dopants in strained Si-Ge heterostructures. Thus it has become crucial to understand the electrical transport through nanoscale germanium devices and the quantum properties of single and interacting dopants in germanium. In order to provide a clear pathway towards the fabrication of germanium nanoscale dopant devices, techniques will be developed to (i) place dopant atoms at controlled positions in a germanium crystal, with atomic precision, in order to learn about their fundamental properties and (ii) fabricate and electrically characterise buried 1-atom thick dopant layers (delta-doped layers) in germanium. The techniques will utilise a scanning tunnelling microscope (STM), which can image and manipulate matter atom-by-atom, to pattern a single atom thick resist layer made from hydrogen atoms, with a precursor gas supplying the dopants. The same STM will then be used to characterise the fabricated structures.
该提案是一项可行性研究,以确定在锗中制造纳米级电子器件的实用性,尺寸范围从几十纳米到原子尺度。数十亿英镑的半导体工业是建立在硅晶圆上制造的集成电路(ic)的基础上的,并且在过去的40年里,每18个月元件就会变小两倍(摩尔定律)。然而,近年来,由于量子效应,电路元件的小尺寸引入了许多麻烦的器件性能问题,例如隧道效应,而将锗纳入器件元件被视为一种潜在的解决方案。上述量子效应的一个积极方面,在接近纳米尺度的设备中可以看到,明确利用量子力学的新设备范例正在为未来几代集成电路和量子信息处理(QIP)应用进行探索。例如,有人提出用锗中的杂质或应变Si-Ge异质结构中的掺杂剂制造量子计算机。因此,了解纳米级锗器件的电输运以及锗中单一掺杂剂和相互作用掺杂剂的量子特性变得至关重要。为了为锗纳米级掺杂器件的制造提供一条清晰的途径,将开发以下技术:(i)以原子精度将掺杂原子放置在锗晶体的受控位置,以便了解其基本特性;(ii)在锗中制造并电学表征埋藏的1原子厚掺杂层(δ掺杂层)。这项技术将利用扫描隧道显微镜(STM),它可以对一个原子一个原子地进行成像和操作,绘制出由氢原子构成的单原子厚的抗蚀剂层的图案,由前驱体气体提供掺杂剂。然后将使用相同的STM来表征制造结构。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interface and nanostructure evolution of cobalt germanides on Ge(001)
  • DOI:
    10.1063/1.4865955
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    T. Grzela;W. Koczorowski;G. Capellini;R. Czajka;M. Radny;N. Curson;S. R. Schofield;M. Schubert;T. Schroeder
  • 通讯作者:
    T. Grzela;W. Koczorowski;G. Capellini;R. Czajka;M. Radny;N. Curson;S. R. Schofield;M. Schubert;T. Schroeder
Initial growth of Ba on Ge ( 001 ) : An STM and DFT study
Ba on Ge ( 001 ) 的初始生长:STM 和 DFT 研究
  • DOI:
    10.1103/physrevb.91.235319
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Koczorowski W
  • 通讯作者:
    Koczorowski W
Higher order reconstructions of the Ge(001) surface induced by a Ba layer
  • DOI:
    10.1016/j.apsusc.2017.11.058
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    W. Koczorowski;T. Grzela;A. Puchalska;M. Radny;L. Jurczyszyn;S. R. Schofield;R. Czajka;N. Curson
  • 通讯作者:
    W. Koczorowski;T. Grzela;A. Puchalska;M. Radny;L. Jurczyszyn;S. R. Schofield;R. Czajka;N. Curson
Ba termination of Ge(001) studied with STM.
使用 STM 研究 Ge(001) 的 Ba 终止。
  • DOI:
    10.1088/0957-4484/26/15/155701
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Koczorowski W
  • 通讯作者:
    Koczorowski W
STM and DFT study on formation and characterization of Ba-incorporated phases on a Ge(001) surface
Ge(001)表面掺Ba相的形成和表征的STM和DFT研究
  • DOI:
    10.1103/physrevb.93.195304
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Koczorowski W
  • 通讯作者:
    Koczorowski W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Curson其他文献

Polythiophene nanofibres for optoelectronic applications
用于光电应用的聚噻吩纳米纤维
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nico Seidler;Neil Curson;G. M. Lazzerini;G. Destri;Giovanni Marletta;Oliver Fenwick;F. D. Stasio
  • 通讯作者:
    F. D. Stasio

Neil Curson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Curson', 18)}}的其他基金

Dopant-based Quantum Technologies in Silicon
硅中基于掺杂剂的量子技术
  • 批准号:
    EP/Z531236/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Research Grant
Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
  • 批准号:
    EP/V027700/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Research Grant

相似海外基金

Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Research Grant
FuSe-TG: Co-Design of Germanium Oxide-based Semiconductors from Deposition to Devices
FuSe-TG:氧化锗基半导体从沉积到器件的协同设计
  • 批准号:
    2235208
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Development of Germanium Ring-Contact Detectors for LEGEND-1000
开发用于 LEGEND-1000 的锗环接触探测器
  • 批准号:
    2310027
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线
  • 批准号:
    EP/X039757/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Research Grant
Point contact germanium detectors for rare event searches
用于罕见事件搜索的点接触锗探测器
  • 批准号:
    SAPIN-2017-00023
  • 财政年份:
    2022
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Low energy electron recoil and nuclear recoil calibrations of a cryogenic germanium detector
低温锗探测器的低能电子反冲和核反冲校准
  • 批准号:
    572611-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.98万
  • 项目类别:
    University Undergraduate Student Research Awards
Ionization Yield Measurement for SuperCDMS Germanium Detectors
SuperCDMS 锗探测器的电离产额测量
  • 批准号:
    SAPPJ-2022-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Subatomic Physics Envelope - Project
RII Track-4: Research and Development of Ring-Contact Germanium Detectors
RII Track-4:环接触锗探测器的研究与开发
  • 批准号:
    2132003
  • 财政年份:
    2022
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了