Ionization Yield Measurement for SuperCDMS Germanium Detectors
SuperCDMS 锗探测器的电离产额测量
基本信息
- 批准号:SAPPJ-2022-00034
- 负责人:
- 金额:$ 4.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Subatomic Physics Envelope - Project
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of my research program is to enhance the science reach of the SuperCDMS SNOLAB experiment. The objective of the proposed research is to measure the ionization yield of germanium with a gram-scale detector in a portable Adiabatic Demagnetization Refrigerator (ADR) in a neutron beam. The SuperCDMS collaboration searches for dark matter particles in cryogenic silicon and germanium detectors at SNOLAB. This technology's low energy threshold will give it world--leading sensitivity to light dark matter particles (between ~0.1--10 GeV/c2). To interpret the data, one critical piece of information is the ionization yield of nuclear recoils in germanium, which characterizes the amount of free charge carriers created per unit energy deposition. The ionization yield in germanium below 1 keV is not well understood. The recent data from Collar et al. (PRD 103, 122003 (2021) ) and from the photoneutron calibration by the SuperCDMS Soudan experiment (manuscript pending) are not consistent with each other, while at the same time deviating from the theoretical predictions. Understanding the ionization yield of germanium would eliminate the large systematic uncertainty caused by the unknown yield value, and would provide prompt high quality data interpretation of the SuperCDMS SNOLAB data. The scientific approach proposed in this one-year program is to measure the nuclear recoil ionization yield through a scattering experiment. The experimental setup consists of a mono-energetic neutron beam incident onto the germanium detectors then an array of secondary detectors at known scattering angles. In 2019, I led an ionization yield measurement with a gram-scale silicon detector in an ADR, with a 58 keV neutron beam, at the Triangle Universities Nuclear Laboratory (TUNL) at Duke University. In the proposed experiments, my research group (including one postdoctoral fellow, two graduate and two undergraduate students), will lead the measurements with germanium, using the necessary ADR infrastructure that I used previously and will be on loan to my laboratory at UofT from Northwestern University. Leveraging the ongoing effort in the SuperCDMS collaboration of designing and fabricating a gram-scale germanium detector, my team will commission the detector in the ADR in my laboratory at UofT in spring 2022, and perform an ionization yield measurement at the TUNL beam, or at an alternative beam facility like the tandem facility at Université de Montréal, based on the beam quality. This operation is planned to happen in the summer of 2022, with data analysis to follow. The proposed research will significantly impact the research efforts of the SuperCDMS SNOLAB by providing precise measurements of the ionization yields of germanium at recoil energies below 1 keV, that will resolve the discrepancies among the existing data and theory. This research will improve the interpretation of the data from the SuperCDMS SNOLAB and will impact ongoing efforts globally.
我的研究计划的目标是提高SuperCDMS SNOLAB实验的科学范围。本研究的目的是在一个便携式绝热退磁制冷机(ADR)中,利用一个克级探测器测量中子束中锗的电离产额。 SuperCDMS合作在SNOLAB的低温硅和锗探测器中寻找暗物质粒子。该技术的低能量阈值将使其对轻暗物质粒子(约0.1- 10 GeV/c2)具有世界领先的灵敏度。为了解释这些数据,一个关键的信息是锗中核反冲的电离产率,它表征了每单位能量沉积产生的自由电荷载流子的数量。锗在低于1 keV的电离产额还没有很好地理解。Collar等人(PRD 103,122003(2021))和SuperCDMS Soudan实验(手稿待定)的光中子校准的最新数据彼此不一致,同时偏离了理论预测。了解锗的电离产额将消除由未知产额值引起的大的系统不确定性,并且将提供SuperCDMS SNOLAB数据的及时高质量数据解释。在这个为期一年的计划中提出的科学方法是通过散射实验测量核反冲电离产额。实验装置包括一个单能中子束入射到锗探测器上,然后在已知的散射角的二次探测器阵列。2019年,我在杜克大学的三角大学核实验室(TUNL)用ADR中的克级硅探测器进行了电离产额测量,中子束为58 keV。在拟议的实验中,我的研究小组(包括一名博士后研究员,两名研究生和两名本科生)将领导锗的测量,使用我以前使用过的必要ADR基础设施,并将从西北大学租借到我在UofT的实验室。利用SuperCDMS合作设计和制造克级锗探测器的持续努力,我的团队将于2022年春季在我在UofT的实验室的ADR中调试探测器,并根据光束质量在TUNL光束或替代光束设施(如蒙特利尔大学的串联设施)进行电离产额测量。这项行动计划在2022年夏天进行,随后进行数据分析。拟议的研究将显著影响SuperCDMS SNOLAB的研究工作,通过提供在反冲能量低于1 keV时锗电离产率的精确测量,这将解决现有数据和理论之间的差异。这项研究将改善对SuperCDMS SNOLAB数据的解释,并将影响全球正在进行的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong, Ziqing其他文献
Single electron–hole pair sensitive silicon detector with surface event discrimination
具有表面事件辨别功能的单电子-空穴对敏感硅探测器
- DOI:
10.1016/j.nima.2020.163757 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hong, Ziqing;Ren, Runze;Kurinsky, Noah;Figueroa-Feliciano, Enectali;Wills, Lise;Ganjam, Suhas;Mahapatra, Rupak;Mirabolfathi, Nader;Nebolsky, Brian;Pinckney, H. Douglas - 通讯作者:
Pinckney, H. Douglas
Hong, Ziqing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 4.55万 - 项目类别:
Research Grant
TUBERSCAN-VENTURE: Delivering a commercially-viable, non-destructive, data driven pipeline to quantify root crops during growth to realise maximum marketable yield and help reduce waste, contributing to net zero emissions
TUBERSCAN-VENTURE:提供商业上可行的、非破坏性的、数据驱动的管道,以量化生长过程中的块根作物,以实现最大的市场产量并帮助减少浪费,从而实现净零排放
- 批准号:
10092039 - 财政年份:2024
- 资助金额:
$ 4.55万 - 项目类别:
Collaborative R&D
SBIR Phase II: Increasing energy yield from dusty solar panels with a new generation of an electrostatic self-cleaning technology
SBIR 第二阶段:利用新一代静电自清洁技术提高多尘太阳能电池板的能源产量
- 批准号:
2322204 - 财政年份:2024
- 资助金额:
$ 4.55万 - 项目类别:
Cooperative Agreement
Expired Fire Extinguisher Powder Recycling - Process&Yield Innovations
过期灭火粉回收-流程
- 批准号:
10098952 - 财政年份:2024
- 资助金额:
$ 4.55万 - 项目类别:
Collaborative R&D
FinerForecasts - Biologically Driven Soft-Fruit Resource Optimisation, Labour & Yield Forecasts at Plant Granularity.
FinerForecasts - 生物驱动的软果资源优化、劳动力
- 批准号:
10072185 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Collaborative R&D
A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
- 批准号:
10064479 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Collaborative R&D
High yield adaptive laser nanomanufacturing system for photonic devices
用于光子器件的高产量自适应激光纳米制造系统
- 批准号:
LP210100467 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Linkage Projects
Clarification of the American soybean derived genetic factors contributing to develop the extremely high yield Japanese cultivars.
澄清源自美国大豆的遗传因素,有助于培育极高产的日本品种。
- 批准号:
23K05195 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of biostimulants and nanobubbles on yield and solar radiation use efficiency of cabbage
生物刺激剂和纳米气泡对甘蓝产量和太阳辐射利用效率的影响
- 批准号:
23K05201 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of iodide transparent polycrystalline scintillators with high light yield and low afterglow
高光产率、低余辉的碘化物透明多晶闪烁体的研制
- 批准号:
23K13689 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists