Adaptive Multi-Resolution Massively-Multicore Hybrid Dynamics
自适应多分辨率大规模多核混合动力学
基本信息
- 批准号:EP/I030395/1
- 负责人:
- 金额:$ 50.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to develop highly scalable software that will exploit next generation, heterogeneous, massively parallel processors (such as those found in widely available graphics processors - GPUs) to deliver orders-of-magnitude performance increases for conformational sampling in molecular simulations. The software will be generally applicable to simulations of any condensed phase molecular system. The initial application area will be to accelerate the sampling of protein conformational change within the types of simulation used for rational drug design in the pharmaceutical industry.Future applications of rational drug discovery will depend critically on the ability to model protein conformational change and protein flexibility. Previous successful applications of computational methods in rational drug design targeted proteins that had small, well-defined binding pockets, in proteins that were either relatively rigid, or changed little upon drug binding. Increasingly, medicinally interesting protein targets have large, open and flexible binding sites. To understand binding, computational models have to be able to predict how these sites will change shape upon drug binding. Coupled to this, a new generation of drugs are being developed that target the interactions between protein surfaces, or that require modelling of protein-protein association. In these cases, the binding site is extremely dynamic, as it is formed between two (or more) proteins that have come together. Existing molecular modelling algorithms and software are incapable of stepping up to the challenge of modelling highly flexible proteins. New software and new algorithms are needed urgently to ensure that computational science continues to play an important role in the pharmaceutical industry.We have designed a new multi-resolution algorithm that will allow for the simulation of molecular dynamics to be broken into two parts; a near-field, atomistic part, and a far-field, coarse grain part. The near-field part is used to model the interactions between neighbouring molecules, using traditional atomistic forcefields, and uses a standard Monte Carlo (MC) algorithm to model the dynamics of individual atoms. The far-field part models the remaining molecular interactions using a coarse-grain (beaded) forcefield, and uses rigid-body dynamics to model global dynamics (e.g large-scale protein conformational change). This multi-resolution split of both the dynamics, and the modelling of the molecular interactions, makes the algorithm ideally suited to heterogeneous computing platforms such as supercomputers equipped with numerical accelerators (e.g. graphics processors). In addition, the software will also be energy-aware, as the energy cost of performing each part of the simulation will be factored into the decision as to which resource it is allocated. For example, if the results of the simulation were not needed immediately, then the simulation could be diverted from the accelerator, and instead run using low-power processors (e.g. clusters of Intel Atoms, like those found in netbooks). This would give the simulator the choice of minimising the total simulation runtime or the total CO2 cost. While developed for the clusters of today, the software will readily scale to the peta- and exascale supercomputers of tomorrow, where concepts such as software adaptability, energy management and fault-tolerance will be key to achieving efficient scaling and efficient supercomputer utilisation. We hope that one of the lasting impacts of this project will be a promotion of greater understanding of energy-aware algorithms and CO2/energy-aware scheduling in the international HPC community. Our intention is to tackle head-on the issues facing the international HPC community in increasing yet variable energy cost and availability, and the need to significantly improve the energy efficiency, and reduce the environmental cost of HPC.
我们建议开发高度可扩展的软件,利用下一代,异构,大规模并行处理器(如广泛使用的图形处理器- gpu),为分子模拟中的构象采样提供数量级的性能提升。该软件将普遍适用于模拟任何凝聚态分子体系。最初的应用领域将是在制药工业中用于合理药物设计的模拟类型中加速蛋白质构象变化的采样。未来合理药物发现的应用将主要取决于模拟蛋白质构象变化和蛋白质灵活性的能力。先前计算方法在合理药物设计中的成功应用针对具有小而明确的结合袋的蛋白质,这些蛋白质要么相对刚性,要么在药物结合时变化很小。越来越多的医学上感兴趣的蛋白质靶标具有大的、开放的和灵活的结合位点。为了理解结合,计算模型必须能够预测这些位点在药物结合时如何改变形状。与此相结合的是,新一代的药物正在开发中,这些药物的目标是蛋白质表面之间的相互作用,或者需要对蛋白质之间的联系进行建模。在这些情况下,结合位点是非常动态的,因为它是在两个(或更多)蛋白质结合在一起形成的。现有的分子建模算法和软件无法跟上对高度柔性蛋白质建模的挑战。迫切需要新的软件和新的算法来确保计算科学继续在制药工业中发挥重要作用。我们设计了一种新的多分辨率算法,可以将分子动力学的模拟分为两部分;近场的原子部分和远场的粗粒部分。近场部分使用传统的原子力场来模拟相邻分子之间的相互作用,并使用标准的蒙特卡罗(MC)算法来模拟单个原子的动力学。远场部分使用粗粒(珠状)力场模拟剩余的分子相互作用,并使用刚体动力学模拟全局动力学(例如大规模蛋白质构象变化)。这种多分辨率的动力学拆分和分子相互作用的建模,使得该算法非常适合于异构计算平台,如配备数值加速器的超级计算机(例如图形处理器)。此外,该软件还将具有能源意识,因为执行模拟的每个部分的能源成本将被考虑到分配资源的决策中。例如,如果模拟的结果不是立即需要的,那么模拟可以从加速器中转移,而使用低功耗处理器(例如,像上网本中发现的那些英特尔原子集群)来运行。这将为模拟器提供最小化总模拟运行时间或总二氧化碳成本的选择。虽然是为今天的集群开发的,但软件将很容易扩展到明天的peta和exascale超级计算机,其中软件适应性,能源管理和容错等概念将是实现高效扩展和高效超级计算机利用的关键。我们希望这个项目的持久影响之一将是促进国际高性能计算社区对能源感知算法和二氧化碳/能源感知调度的更好理解。我们的目的是正面解决国际高性能计算社区面临的问题,即不断增加的可变能源成本和可用性,以及显著提高能源效率和降低高性能计算环境成本的需求。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entropy of Simulated Liquids Using Multiscale Cell Correlation.
- DOI:10.3390/e21080750
- 发表时间:2019-07-31
- 期刊:
- 影响因子:0
- 作者:Ali HS;Higham J;Henchman RH
- 通讯作者:Henchman RH
Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study.
- DOI:10.1021/acs.jcim.7b00347
- 发表时间:2017-09-25
- 期刊:
- 影响因子:5.6
- 作者:Aldeghi M;Bodkin MJ;Knapp S;Biggin PC
- 通讯作者:Biggin PC
New methods: general discussion.
新方法:一般性讨论。
- DOI:10.1039/c6fd90075e
- 发表时间:2016
- 期刊:
- 影响因子:3.4
- 作者:Angulo G
- 通讯作者:Angulo G
Biomolecular Simulations in the Time of COVID19, and After.
- DOI:10.1109/mcse.2020.3024155
- 发表时间:2020-11
- 期刊:
- 影响因子:2.1
- 作者:Amaro RE;Mulholland AJ
- 通讯作者:Mulholland AJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Mulholland其他文献
QM/MM Study on Cleavage Mechanism Catalyzed by Zika Virus NS2B/NS3 Serine Protease
- DOI:
10.1016/j.bpj.2018.11.3005 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Bodee Nutho;Adrian Mulholland;Thanyada Rungrotmongkol - 通讯作者:
Thanyada Rungrotmongkol
Adrian Mulholland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Mulholland', 18)}}的其他基金
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W013738/1 - 财政年份:2022
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
BEORHN: Bacterial Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟进行硝化反应中活性羟胺的细菌酶氧化
- 批准号:
BB/V016768/1 - 财政年份:2022
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
Commercialisation of VR for biomolecular design
用于生物分子设计的 VR 商业化
- 批准号:
BB/T017066/1 - 财政年份:2020
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
CCP-BioSim: Biomolecular Simulation at the Life Sciences Interface
CCP-BioSim:生命科学界面的生物分子模拟
- 批准号:
EP/M022609/1 - 财政年份:2015
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
Predicting drug-target binding kinetics through multiscale simulations
通过多尺度模拟预测药物靶标结合动力学
- 批准号:
EP/M015378/1 - 财政年份:2015
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
BristolBridge: Bridging the Gaps between the Engineering and Physical Sciences and Antimicrobial Resistance
BristolBridge:弥合工程和物理科学与抗菌素耐药性之间的差距
- 批准号:
EP/M027546/1 - 财政年份:2015
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
Computational tools for enzyme engineering: bridging the gap between enzymologists and expert simulation
酶工程计算工具:弥合酶学家和专家模拟之间的差距
- 批准号:
BB/L018756/1 - 财政年份:2014
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
The UK High-End Computing Consortium for Biomolecular Simulation
英国生物分子模拟高端计算联盟
- 批准号:
EP/L000253/1 - 财政年份:2013
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
Inquire: Software for real-time analysis of binding
查询:实时分析结合的软件
- 批准号:
BB/K016601/1 - 财政年份:2013
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
CCP-BioSim: Biomolecular simulation at the life sciences interface
CCP-BioSim:生命科学界面的生物分子模拟
- 批准号:
EP/J010588/1 - 财政年份:2011
- 资助金额:
$ 50.74万 - 项目类别:
Research Grant
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
- 批准号:
10097846 - 财政年份:2024
- 资助金额:
$ 50.74万 - 项目类别:
Collaborative R&D
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
- 批准号:
23K28346 - 财政年份:2024
- 资助金额:
$ 50.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Multi-Resolution Curriculum Learning Guided Convolutional Neural Networks for Automatic Segmentation of iPS Cell Colonies
多分辨率课程学习引导卷积神经网络自动分割 iPS 细胞集落
- 批准号:
23K11170 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"High resolution determination of multi-species biofilm development on tracheostomy tubing
“气管造口管上多物种生物膜发育的高分辨率测定
- 批准号:
2895240 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Studentship
CAREER: Enhancing ambient capacitive sensing through improved resolution and multi-modal sensor fusion
职业:通过提高分辨率和多模式传感器融合增强环境电容传感
- 批准号:
2237945 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
Movie-based wavefront control of multi-aperture optics for high-resolution remote sensing
用于高分辨率遥感的多孔径光学器件的基于电影的波前控制
- 批准号:
23K13346 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Revealing the launching mechanism and structure of black hole outflows through high resolution X-ray spectroscopy and multi-wavelength observations
通过高分辨率X射线光谱和多波长观测揭示黑洞流出物的发射机制和结构
- 批准号:
23K03459 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Super-Resolution Technology Using Multi-Channel Simultaneous Sampling for Non-Stationary Signals
非平稳信号多通道同时采样超分辨技术研究
- 批准号:
23K03622 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Acquisition of multi-mode, high-resolution, high-sensitivity imaging platform
购置多模式、高分辨率、高灵敏度成像平台
- 批准号:
10629563 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Collaborative Research: High-Resolution, Multi-Species Reconstructions of Greater Yellowstone Region Paleoclimates Using Tree-Ring Anatomy
合作研究:利用树木年轮解剖学对大黄石地区古气候进行高分辨率、多物种重建
- 批准号:
2303481 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Standard Grant