Self-assembling Liposome Nano-transducers

自组装脂质体纳米传感器

基本信息

  • 批准号:
    EP/J001953/1
  • 负责人:
  • 金额:
    $ 93.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Transducers are devices that can convert electrical energy into mechanical energy and vice versa. They are widely used in non-destructive testing to generate acoustic signals in test materials and to detect changes in the acoustic signal as it travels enabling material properties to be determined. The application areas for transducers in non-destructive testing are diverse and range from locating cracks in metal structures to diagnosing disease in humans. Transducers are typically made from single crystals such as quartz or ceramics. Recently it has been shown that a much wider range of materials can be used in transducers if they are miniaturised down to a nanometre scale. In fact, it has been shown that electrical energy can be converted to mechanical energy in biological membranes. Further, strategies to greatly increase the size of this effect have also been identified. These findings are very exciting as they pave the way for development of tiny transducers that could be used in the human body without posing any risk of toxicity, thus having tremendous potential for application in medicine. The work proposed in this Fellowship is centred on the development of nano-sized transducers made from phospholipids, which are the main type of fat found in membrane of biological cells. A huge area of application for the nano-transducers proposed is in medical imaging which presents a number of challenges. In practice, the nano-transducers could be used to remotely probe tissue properties and used in an imaging system to aid the diagnosis of disease. There is also a growing need for new imaging systems capable of remotely studying cells and tissues in the body to support the development of emerging therapies that use human cells to treat currently incurable conditions, such as Parkinson's disease and spinal injury, as well as chronic conditions including diabetes and heart disease. The hope is that by introducing new healthy cells into the body they will help to restore the function of injured or diseased cells. To ensure these therapies have a positive effect it is important that the location and behaviour of introduced cells are tracked once in the body. This is a challenging problem which current technologies are struggling to address. The work proposed in this Fellowship will address the above challenges. The approach that will be taken is different from other workers particularly as it will involve the development of transducers made from organic material. A major part of the proposed work will be designing and fabricating the nano-transducers. The phospholipids the nano-transducers will be composed of will be formed into bubbles called liposomes. Due to the natural link between the electrical and mechanical properties of liposomes it will be possible to use them as tiny acoustic sources. Strategies to increase the size of the acoustic signal produced will be developed based on modification of the liposome composition, shape and size. Another part of this Fellowship will be the development of a suitable imaging system using the nano-transducers that can be used to produce diagnostic images of the body. Also by controllably decorating the liposomes with specific biological molecules the nano-transducers will be able to target certain cell types enabling them to act as beacons to locate cells in the body. The final part of the work will be centred on demonstrating the capability of the new imaging system using tissue phantoms that mimic the human body. In particular, the ability to detect tumours, electrical activity in the brain and track cells used in therapy will be investigated. Overall, the success of this work will deliver a new medical imaging modality that could be implemented readily within clinical pathways at the point of care. This would have a significant impact on healthcare and enable new therapies to become available for clinical use and thus contribute to the health and wealth of society.
换能器是能够将电能转换成机械能或将机械能转换成电能的装置。它们广泛用于无损检测,以在测试材料中产生声信号,并检测声信号在传播时的变化,从而确定材料特性。传感器在无损检测中的应用领域多种多样,从金属结构中的裂纹定位到人类疾病诊断。传感器通常由诸如石英或陶瓷的单晶制成。最近,已经表明,如果将传感器的尺寸减小到纳米级,则可以在传感器中使用更广泛的材料。事实上,已经表明,电能可以在生物膜中转化为机械能。此外,还确定了大大增加这种效应的规模的策略。这些发现非常令人兴奋,因为它们为开发可用于人体而不会造成任何毒性风险的微型传感器铺平了道路,从而具有巨大的医学应用潜力。该奖学金中提出的工作集中在由磷脂制成的纳米尺寸传感器的开发上,磷脂是生物细胞膜中发现的主要脂肪类型。 所提出的纳米换能器的巨大应用领域是医学成像,这提出了许多挑战。在实践中,纳米传感器可用于远程探测组织特性,并用于成像系统,以帮助诊断疾病。人们对能够远程研究体内细胞和组织的新成像系统的需求也越来越大,以支持开发使用人类细胞治疗目前无法治愈的疾病的新兴疗法,如帕金森病和脊髓损伤,以及包括糖尿病和心脏病在内的慢性疾病。希望通过将新的健康细胞引入体内,它们将有助于恢复受损或患病细胞的功能。为了确保这些疗法具有积极的效果,重要的是一旦进入体内就跟踪引入细胞的位置和行为。这是当前技术正在努力解决的具有挑战性的问题。 本研究金计划开展的工作将应对上述挑战。将采取的方法是不同于其他工人,特别是因为它将涉及由有机材料制成的传感器的发展。拟议工作的一个主要部分将是设计和制造纳米传感器。组成纳米传感器的磷脂将形成称为脂质体的气泡。由于脂质体的电学和机械性质之间的天然联系,将有可能将它们用作微小的声源。将基于脂质体组成、形状和大小的修改来开发增加所产生的声学信号的大小的策略。该奖学金的另一部分将是使用可用于产生身体诊断图像的纳米换能器开发合适的成像系统。此外,通过用特定的生物分子可控地装饰脂质体,纳米换能器将能够靶向某些细胞类型,使它们能够充当信标来定位体内的细胞。工作的最后一部分将集中在展示新成像系统的能力,使用模拟人体的组织幻影。特别是,将研究检测肿瘤、脑电活动和跟踪治疗中使用的细胞的能力。总的来说,这项工作的成功将提供一种新的医学成像模式,可以在护理点的临床路径中轻松实施。这将对医疗保健产生重大影响,并使新的疗法能够用于临床,从而为社会的健康和财富做出贡献。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents.
  • DOI:
    10.1371/journal.pone.0159742
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang Q;Morgan SP;O'Shea P;Mather ML
  • 通讯作者:
    Mather ML
Numerical Investigation of the Mechanisms of Ultrasound-Modulated Bioluminescence Tomography.
超声调制生物发光断层扫描机制的数值研究。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melissa Mather其他文献

6. Label-free selective plane illumination microscopy of tissue samples
  • DOI:
    10.1016/j.jsha.2017.06.029
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Muteb Alharbi;Saleh Khonezan;Melissa Mather;Abdulrahman Almaymn
  • 通讯作者:
    Abdulrahman Almaymn

Melissa Mather的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melissa Mather', 18)}}的其他基金

QUERY: Integrated quantum and electron microscopy for nanoscale imaging and sensing
问题:用于纳米级成像和传感的集成量子和电子显微镜
  • 批准号:
    EP/V049623/1
  • 财政年份:
    2021
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Research Grant
Quantum Sensing Of Mitochondrial Function
线粒体功能的量子传感
  • 批准号:
    BB/T012226/1
  • 财政年份:
    2020
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Research Grant
Self-assembling Liposome Nano-transducers
自组装脂质体纳米传感器
  • 批准号:
    EP/J001953/2
  • 财政年份:
    2015
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Fellowship

相似海外基金

Assembling the building blocks in the blueprint of the embryonic head
在胚胎头部的蓝图中组装积木
  • 批准号:
    DP240101571
  • 财政年份:
    2024
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Discovery Projects
NSF Convergence Accelerator Track M: Slime Mold Inspired Self-Assembling Conveyor System for Flood Response
NSF 融合加速器轨道 M:受粘菌启发的用于洪水响应的自组装输送系统
  • 批准号:
    2344289
  • 财政年份:
    2024
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321344
  • 财政年份:
    2023
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323968
  • 财政年份:
    2023
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Standard Grant
Self-Assembling Peptide Nanoparticles for in vivo Genome Editor Delivery to Hematopoietic Stem Cells
用于体内基因组编辑器递送至造血干细胞的自组装肽纳米颗粒
  • 批准号:
    10605021
  • 财政年份:
    2023
  • 资助金额:
    $ 93.45万
  • 项目类别:
Self-Assembling Camptothecin Nanofiber Hydrogels as Adjunct Therapy for Intraoperative Treatment of Malignant Glioma
自组装喜树碱纳米纤维水凝胶作为恶性胶质瘤术中治疗的辅助疗法
  • 批准号:
    10738545
  • 财政年份:
    2023
  • 资助金额:
    $ 93.45万
  • 项目类别:
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323969
  • 财政年份:
    2023
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Standard Grant
RNA delivery by self-assembling phagocytic-competent protein crystals
通过自组装具有吞噬能力的蛋白质晶体进行 RNA 递送
  • 批准号:
    10067767
  • 财政年份:
    2023
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Collaborative R&D
CAREER: Representing, Discovering, and Assembling Motifs for Video Understanding
职业:表示、发现和组装视频理解的主题
  • 批准号:
    2238769
  • 财政年份:
    2023
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321341
  • 财政年份:
    2023
  • 资助金额:
    $ 93.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了