Tools for automated cell identification and cell lineage tracking

自动细胞识别和细胞谱系追踪工具

基本信息

  • 批准号:
    EP/J00619X/1
  • 负责人:
  • 金额:
    $ 10.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

This project is a collaboration between the Broad Institute, Amnis, Cancer Research UK and the Centre for Nanohealth in Swansea. The sabbatical will allow Professor Paul Rees to visit both the Broad Institute and Amnis in order to develop new tools which will be used to measure cell lineages and to automate the identification of specific cell types in large cell populations. These tools will be tailored to the needs of clinicians by collaborating with Cancer Research UK, Broad Institute affiliated hospitals and a range of collaborators in the UK. However the aim is to foster long term collaboration between the two US partners, the group at Swansea and CRUK, London Research Institute. Therefore we have developed a long term research programme which will be instigated by Paul Rees's visit and sustained by future planned visits for the other members of the team in Swansea and provision for the US partners to visit the Swansea.The function of an organism is determined by the evolution of a cell population all descended from a single progenitor cell. The lineage (relationship tree) of a cell population evolving from one progenitor cell is often used as a measure of that cell population or organism's health. The most appropriate method of determining lineage is to take time lapse images using microscopy (bright field) of the cell population. The cell movement is tracked and mitosis events identified and the appropriate relationship between parent and daughter cells noted. This can be done manually or recently researchers are developing automated cell tracking algorithms. However this process is computationally intensive and fails if the cells move out of focus or if the cell boundary has a low contrast compared with the background. For this project our idea is to simply use the florescent endosomes as a surrogate marker for the cell so by simply tracking the endosomes we track the cell. Many clinical and research applications rely on the identification of a particular cell type with a large cell population. One of the best techniques for this type of application is flow cytometry where cells flow past a laser and the scattered light is detected. This allows the cell size and structure to be measured together with the fluorescence from markers which can label cell structure and function. At Swansea we use the recently developed imaging flow cytometer which is a hybrid system that enables each individual cell within a cell population to be imaged at very high speeds by flowing the cells in a fluid between an exciting laser and a camera. This is an ideal platform identifying specific cell types by image analysis rather than the intensity of a fluorescent marker or scatter signal which provides no spatial information and is a more ambiguous indirect measure of the cell property. However the very nature of imaging cytometry means any measurement requires the user to effectively process the vast number of images to detect the traits of cells required. This is usually done manually using the basic image processing tools supplied with the cytometer and each idividual image is inspected to check for target cells which is incredibly time consuming with cell populations often in excess of 10^6. As a second project we aim to develop a tool which uses both evolutionary algorithms (or genetic programming) and machine learning to determine which image processing algorithms (and combinations of algorithms) best distinguish between the target cells and non target cells. The algorithms used will be compatible with the current IDEAS imagestream software provided freely by Amnis (which currently only allows simple user driven masking filters to assess cells) to allow the inclusion of advance machine learning and evolutionary algorithms into the IDEAS platform.
该项目是布罗德研究所,Amnis,英国癌症研究中心和斯旺西纳米健康中心之间的合作。休假将允许Paul Rees教授访问布罗德研究所和Amnis,以开发新的工具,用于测量细胞谱系并自动识别大型细胞群中的特定细胞类型。这些工具将通过与英国癌症研究所、布罗德研究所附属医院和英国的一系列合作者合作,根据临床医生的需求量身定制。然而,其目的是促进两个美国合作伙伴之间的长期合作,该集团在斯旺西和CRUK,伦敦研究所。因此,我们制定了一项长期的研究计划,该计划将由Paul Rees的访问发起,并由斯旺西团队的其他成员的未来计划访问以及美国合作伙伴访问斯旺西的规定来维持。生物体的功能是由细胞群的进化决定的,这些细胞群都是由单个祖细胞进化而来的。从一个祖细胞进化而来的细胞群的谱系(关系树)通常被用作该细胞群或生物体健康的量度。确定谱系的最合适的方法是使用显微镜(亮场)拍摄细胞群的延时图像。跟踪细胞运动,鉴定有丝分裂事件,并记录母细胞和子细胞之间的适当关系。这可以手动完成,或者最近研究人员正在开发自动细胞跟踪算法。然而,该过程是计算密集型的,并且如果细胞移出焦点或者如果细胞边界与背景相比具有低对比度,则该过程失败。对于这个项目,我们的想法是简单地使用荧光素内体作为细胞的替代标记,因此通过简单地跟踪内体,我们跟踪细胞。许多临床和研究应用依赖于鉴定具有大细胞群体的特定细胞类型。这种类型的应用的最佳技术之一是流式细胞术,其中细胞流过激光并检测散射光。这允许测量细胞大小和结构以及来自标记细胞结构和功能的标记物的荧光。在斯旺西,我们使用最近开发的成像流式细胞仪,这是一个混合系统,使每个细胞内的细胞群体被成像在非常高的速度通过流动的细胞之间的流体激发激光和相机。这是通过图像分析而不是荧光标记物或散射信号的强度来识别特定细胞类型的理想平台,荧光标记物或散射信号不提供空间信息并且是细胞性质的更模糊的间接测量。然而,成像细胞术的本质意味着任何测量都需要用户有效地处理大量图像,以检测所需细胞的特性。这通常使用细胞仪提供的基本图像处理工具手动完成,并且检查每个单独的图像以检查靶细胞,这对于通常超过10^6的细胞群是非常耗时的。作为第二个项目,我们的目标是开发一种工具,它使用进化算法(或遗传编程)和机器学习来确定哪些图像处理算法(和算法组合)最好地区分目标细胞和非目标细胞。所使用的算法将与Amnis免费提供的当前IDEAS图像分析软件兼容(目前仅允许简单的用户驱动掩蔽过滤器评估细胞),以允许将先进的机器学习和进化算法纳入IDEAS平台。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconstructing cell cycle and disease progression using deep learning.
  • DOI:
    10.1038/s41467-017-00623-3
  • 发表时间:
    2017-09-06
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Eulenberg P;Köhler N;Blasi T;Filby A;Carpenter AE;Rees P;Theis FJ;Wolf FA
  • 通讯作者:
    Wolf FA
An Analysis of the Practicalities of Multi-Color Nanoparticle Cellular Bar-Coding.
多色纳米颗粒细胞条形码的实用性分析。
Nanoparticle vesicle encoding for imaging and tracking cell populations.
用于成像和跟踪细胞群的纳米颗粒囊泡编码。
  • DOI:
    10.1038/nmeth.3105
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Rees P
  • 通讯作者:
    Rees P
Label-free cell cycle analysis for high-throughput imaging flow cytometry.
  • DOI:
    10.1038/ncomms10256
  • 发表时间:
    2016-01-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Blasi T;Hennig H;Summers HD;Theis FJ;Cerveira J;Patterson JO;Davies D;Filby A;Carpenter AE;Rees P
  • 通讯作者:
    Rees P
A New Imaging Platform for Visualizing Biological Effects of Non-Invasive Radiofrequency Electric-Field Cancer Hyperthermia.
  • DOI:
    10.1371/journal.pone.0136382
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Corr SJ;Shamsudeen S;Vergara LA;Ho JC;Ware MJ;Keshishian V;Yokoi K;Savage DJ;Meraz IM;Kaluarachchi W;Cisneros BT;Raoof M;Nguyen DT;Zhang Y;Wilson LJ;Summers H;Rees P;Curley SA;Serda RE
  • 通讯作者:
    Serda RE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Rees其他文献

Immunocompetent cell targeting by food-additive titanium dioxide
通过食品添加剂二氧化钛靶向免疫活性细胞
  • DOI:
    10.1038/s41467-025-60248-9
  • 发表时间:
    2025-07-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    John W. Wills;Alicja Dabrowska;Jack Robertson;Michelle Miniter;Sebastian Riedle;Huw D. Summers;Rachel E. Hewitt;Adeeba Fathima;Alessandra Barreto da Silva;Carlos A. P. Bastos;Stuart Micklethwaite;Åsa V. Keita;Johan D. Söderholm;Nicole C. Roy;Don Otter;Ravin Jugdaohsingh;Pietro Mastroeni;Andy P. Brown;Paul Rees;Jonathan J. Powell
  • 通讯作者:
    Jonathan J. Powell
Military application of mechanical CPR devices: a pressing requirement?
机械心肺复苏设备的军事应用:迫切的要求?
Expedited conveyance of out-of-hospital-cardiac arrest patients with STEMI and shockable rhythms to Cardiac Arrest Centres − A feasibility pilot study of the British Cardiovascular Intervention Society conveyance algorithm
将患有ST段抬高型心肌梗死(STEMI)且可除颤心律的院外心脏骤停患者快速转运至心脏骤停中心——英国心血管介入学会转运算法的可行性初步研究
  • DOI:
    10.1016/j.resuscitation.2025.110491
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Rupert F.G. Simpson;Thomas Johnson;Paul Rees;Guy Glover;Uzma Sajjad;Samer Fawaz;Sarosh Khan;Emma Beadle;Daryl Perilla;Maria Maccaroni;Christopher Cook;Marco Mion;Qiang Xue;Rohan Jagathesan;Gerald J. Clesham;Tom Quinn;Johannes Von Vopelius-Feldt;Sean Gallagher;Abdul Mozid;Ellie Gudde;Thomas R. Keeble
  • 通讯作者:
    Thomas R. Keeble
The REBOA window: a cadaveric study delineating the optimum site for austere cannulation of the femoral artery for resuscitative endovascular balloon occlusion of the aorta
REBOA 窗口:一项尸体研究,描绘了对股动脉进行严格插管以进行主动脉复苏性血管内球囊闭塞的最佳部位
  • DOI:
    10.1136/bmjmilitary-2019-001383
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    N. Slim;Charles Timothy West;Charles Timothy West;Paul Rees;C. Brassett;M. Gaunt
  • 通讯作者:
    M. Gaunt
Air Transport Medicine: From the Field
  • DOI:
    10.1016/j.amj.2024.03.009
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    James Price;Joe Dowsing;Jon Barratt;Kate Lachowycz;Paul Rees;Rob Major;Shadman Aziz;Ed B.G. Barnard
  • 通讯作者:
    Ed B.G. Barnard

Paul Rees的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Rees', 18)}}的其他基金

Open access deep learning solutions for imaging flow cytometry
用于成像流式细胞术的开放获取深度学习解决方案
  • 批准号:
    BB/P026818/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Research Grant
14 NSFBIO: Mining of imaging flow cytometry data for label free, single cell analysis
14 NSFBIO:挖掘成像流式细胞术数据以进行无标记单细胞分析
  • 批准号:
    BB/N005163/1
  • 财政年份:
    2015
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Research Grant
Doctoral Training Grant (DTG) to provide funding for 1 PhD studentship.
博士培训补助金 (DTG) 为 1 名博士生提供资助。
  • 批准号:
    NE/H527232/1
  • 财政年份:
    2009
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Training Grant

相似海外基金

Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
  • 批准号:
    10089013
  • 财政年份:
    2024
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Collaborative R&D
Engineering Tissue Level Targeting of Biologic Drugs via Automated Interfacial Microneedle Pumps
通过自动化界面微针泵工程化组织水平靶向生物药物
  • 批准号:
    10710767
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
  • 批准号:
    10575081
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
  • 批准号:
    10719296
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
SyncroPatch 384 Automated Patch Clamp Instrument
SyncroPatch 384 自动膜片钳仪器
  • 批准号:
    10721590
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
Adult human brain tissue cultures to study neuroHIV
成人脑组织培养研究神经艾滋病毒
  • 批准号:
    10619170
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
Pooled Optical Imaging, Neurite Tracing, and Morphometry Across Perturbations (POINT-MAP).
混合光学成像、神经突追踪和扰动形态测量 (POINT-MAP)。
  • 批准号:
    10741188
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
ATG2 mediated lipid transport is essential for lipid droplet homeostasis
ATG2 介导的脂质转运对于脂滴稳态至关重要
  • 批准号:
    10679372
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
  • 批准号:
    10648372
  • 财政年份:
    2023
  • 资助金额:
    $ 10.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了