RIVERAS: Robust Integrated Verification of Autonomous Systems
RIVERAS:自主系统的鲁棒集成验证
基本信息
- 批准号:EP/J01205X/1
- 负责人:
- 金额:$ 104.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Any system used for a safety-critical task, like a pollution-monitoring unmanned aerial vehicle, a robot inspecting a nuclear plant or a human assistive nursebot in a hospital or at home, must have enough evidence to demonstrate its safety before we can use it. Gathering such evidence involves verification, the process of demonstrating that the implementation of a system meets the requirements laid down in its specification. Much work has been done to develop tools and methods for verification of microelectronic designs and software.When we try to verify an autonomous, intelligent system (AIS), with existing methods, two problems arise: First, traditional verification techniques rely on a specification that fully defines the functional behaviour of the system to be verified. But, we want to use an intelligent system - one that can adapt to circumstances, deciding what to do without being told exactly how - precisely so we can avoid having to specify a response for every possible scenario. There are usually far too many possible scenarios for this to be practical. Instead, we need flexible specifications expressed in terms of acceptable and required behaviour with associated precise limits for critical properties complemented by more vague indications of desired actions.Second, the control software to achieve dynamic adaptation is very complex, using iterative optimization algorithms to combine discrete and continuous decision-making. Although there has been much research on how to design these algorithms, their verification is still an open research question.The RIVERAS project aims to tackle both of these problems. First, we will develop a way of verifying a system with a flexible specification. This will require a formal way to write a specification, using a modelling language that can capture these flexible requirements. Then, fuzzy concepts will be used to analyse how well we meet the specification. Fuzzy concepts are graded and properties or statements involving them are true (or false) to some degree. This means that specifications may only be partialy satisfied which introduces new challenges when verifying them.Second, we will also develop ways of verifying control software that uses optimization, which is a general approach for making decisions. Given a cost model and a set of constraints that define permitted limits, an optimizer finds the best set of decisions to maximize or minimize the cost while staying within permitted limits. Most planning problems for intelligent systems can be expressed in the form of optimization and research on control theory proves properties that help us understand how well it should work. We will use the properties established with control theory as a specification to demonstrate that the optimizer software does what it should. Moreover, we will integrate these properties into the software. This allows us to detect, contain and correct failures should they occur. Finally, we will integrate all these developments into an innovative "Design for Verification" (DFV) method. Engineers who use our DFV methods when specifying and designing an intelligent system, and when producing its optimization-based control software, will immediately be able to use our verification methods to determine if they have done it right. This will be far easier and a lot more efficient than designing it first, without thinking about verification, and then figuring out how to verify afterwards.To help refine our methods and to evaluate them afterwards, RIVERAS will try them out on real robots. For example, we will design an intelligent exploration system for a Mars rover, implement it on a robot on Earth, and produce all the verification evidence to demonstrate it works as intended.
任何用于安全关键任务的系统,如污染监测无人机、检查核电站的机器人或医院或家中的人类辅助护理机器人,在我们使用它之前,都必须有足够的证据来证明其安全性。收集这些证据包括验证,即证明系统的实施符合其规范中规定的要求的过程。在开发验证微电子设计和软件的工具和方法方面已经做了很多工作。当我们尝试用现有方法验证自主智能系统(AIS)时,会出现两个问题:首先,传统的验证技术依赖于一个规范,该规范完全定义了待验证系统的功能行为。但是,我们想要使用一个智能系统——一个可以适应环境的系统,在不被告知具体如何做的情况下决定做什么——这样我们就可以避免为每一个可能的情况指定一个回应。通常情况下,有太多可能的场景,这是不切实际的。相反,我们需要灵活的规范,用可接受的和必需的行为来表达,对关键属性有相关的精确限制,并辅以更模糊的期望行为指示。其次,控制软件实现动态自适应非常复杂,采用迭代优化算法将离散与连续决策相结合。虽然关于如何设计这些算法已经有了很多研究,但它们的验证仍然是一个开放的研究问题。RIVERAS项目旨在解决这两个问题。首先,我们将开发一种具有灵活规格的系统验证方法。这将需要一种正式的方式来编写规范,使用一种能够捕获这些灵活需求的建模语言。然后,模糊概念将用于分析我们满足规范的程度。模糊概念是分级的,涉及它们的属性或陈述在某种程度上是正确的(或错误的)。这意味着规范可能只得到部分满足,这在验证它们时引入了新的挑战。其次,我们还将开发验证使用优化的控制软件的方法,这是做出决策的一般方法。给定一个成本模型和一组定义允许限制的约束,优化器将找到一组最佳决策,以在允许限制内最大化或最小化成本。大多数智能系统的规划问题都可以用优化的形式来表达,对控制理论的研究证明了帮助我们理解它应该如何工作的特性。我们将使用控制理论建立的属性作为规范来证明优化器软件做了它应该做的事情。此外,我们将把这些属性集成到软件中。这使我们能够检测、控制和纠正发生的故障。最后,我们将把所有这些发展整合到一个创新的“验证设计”(DFV)方法中。工程师在指定和设计智能系统时使用DFV方法,以及在生产基于优化的控制软件时,将能够立即使用我们的验证方法来确定他们是否做对了。这比先设计它,不考虑验证,然后再弄清楚如何验证要容易得多,效率也高得多。为了帮助改进我们的方法并在之后进行评估,RIVERAS将在真正的机器人上进行试验。例如,我们将为火星探测器设计一个智能探测系统,在地球上的机器人上实现它,并产生所有验证证据来证明它按预期工作。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formal verification of control systems' properties with theorem proving
通过定理证明对控制系统的属性进行形式化验证
- DOI:10.1109/control.2014.6915147
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Araiza-Illan D
- 通讯作者:Araiza-Illan D
Towards Autonomous Robotic Systems - 16th Annual Conference, TAROS 2015, Liverpool, UK, September 8-10, 2015, Proceedings
迈向自主机器人系统 - 第 16 届年会,TAROS 2015,英国利物浦,2015 年 9 月 8-10 日,会议记录
- DOI:10.1007/978-3-319-22416-9_4
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Antuña L
- 通讯作者:Antuña L
Formalizing and guaranteeing human-robot interaction
形式化并保证人机交互
- DOI:10.1145/3433637
- 发表时间:2021
- 期刊:
- 影响因子:22.7
- 作者:Kress-Gazit H
- 通讯作者:Kress-Gazit H
Formal Verification of Control Systems Properties with Theorem Proving
通过定理证明对控制系统特性进行形式化验证
- DOI:10.48550/arxiv.1405.7615
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Araiza-Illan D
- 通讯作者:Araiza-Illan D
On the impact of different types of errors on trust in human-robot interaction Are laboratory-based HRI experiments trustworthy?
- DOI:10.1075/is.18067.flo
- 发表时间:2019-01-01
- 期刊:
- 影响因子:1.5
- 作者:Flook, Rebecca;Shrinah, Anas;Lemaignan, Severin
- 通讯作者:Lemaignan, Severin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kerstin Eder其他文献
Would you Trust a Vehicle Merging into Your Lane? Subjective Evaluation of Negotiating Behaviour in a Congested Merging Scenario
您会相信有车辆并入您的车道吗?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Akinobu Goto;Kerstin Eder - 通讯作者:
Kerstin Eder
On Self-Supervised Dynamic Incremental Regularised Adaptation
关于自监督动态增量正则化适应
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Abanoub Ghobrial;Kerstin Eder - 通讯作者:
Kerstin Eder
Hasta la vista baby: why we should dispense of “autonomy” in “autonomous systems”
- DOI:
10.1007/s00146-023-01662-9 - 发表时间:
2023-04-28 - 期刊:
- 影响因子:4.700
- 作者:
Helen Smith;Kerstin Eder;Jonathan Ives - 通讯作者:
Jonathan Ives
Kerstin Eder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kerstin Eder', 18)}}的其他基金
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Topological nanophotonic metamaterials for robust integrated devices
用于稳健集成器件的拓扑纳米光子超材料
- 批准号:
23KF0085 - 财政年份:2023
- 资助金额:
$ 104.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SCC-IRG Track 1: Socially-integrated robust communication and information-resource sharing technologies for post-disaster community self-reliance
SCC-IRG 第 1 轨道:社会整合的稳健通信和信息资源共享技术,促进灾后社区自力更生
- 批准号:
2311405 - 财政年份:2023
- 资助金额:
$ 104.1万 - 项目类别:
Standard Grant
SBIR PHASE II, TOPIC 420: INTEGRATED PLATFORM AND CONSUMABLES FOR ROBUST, SENSITIVE AND HIGH-THROUGHPUT SINGLE-CELL PROTEOMICS
SBIR 第二阶段,主题 420:用于稳健、灵敏和高通量单细胞蛋白质组学的集成平台和耗材
- 批准号:
10948319 - 财政年份:2023
- 资助金额:
$ 104.1万 - 项目类别:
Development of an integrated and scalable platform process for the robust manufacture of allogeneic iPSC immunotherapies
开发集成且可扩展的平台流程,用于稳健生产同种异体 iPSC 免疫疗法
- 批准号:
10026664 - 财政年份:2022
- 资助金额:
$ 104.1万 - 项目类别:
Collaborative R&D
Robust Integrated Assembly Design and Conformance Methods for Direct Digital Manufacturing
直接数字化制造的稳健集成装配设计和一致性方法
- 批准号:
RGPIN-2016-04689 - 财政年份:2021
- 资助金额:
$ 104.1万 - 项目类别:
Discovery Grants Program - Individual
Robust Artificial Olfactory Sensor with Integrated Molecular Selective Capture and Release Devices
具有集成分子选择性捕获和释放装置的鲁棒人工嗅觉传感器
- 批准号:
21K18868 - 财政年份:2021
- 资助金额:
$ 104.1万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
- 批准号:
2113736 - 财政年份:2020
- 资助金额:
$ 104.1万 - 项目类别:
Standard Grant
Robust Multi-Molecular Recognition through Nano-Spatiotemporal Thermal Control of Integrated Oxide Sensors
通过集成氧化物传感器的纳米时空热控制实现鲁棒多分子识别
- 批准号:
20H02208 - 财政年份:2020
- 资助金额:
$ 104.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
- 批准号:
2037405 - 财政年份:2020
- 资助金额:
$ 104.1万 - 项目类别:
Standard Grant
Robust Integrated Assembly Design and Conformance Methods for Direct Digital Manufacturing
直接数字化制造的稳健集成装配设计和一致性方法
- 批准号:
RGPIN-2016-04689 - 财政年份:2020
- 资助金额:
$ 104.1万 - 项目类别:
Discovery Grants Program - Individual