On the long term behaviour of stochastic heat equations
关于随机热方程的长期行为
基本信息
- 批准号:EP/J017418/1
- 负责人:
- 金额:$ 12.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many phenomena evolve under the influence of random inputs. For instance, the motion of a strand of DNA, the internal structure of the sun and many phenomena in particle systems all involve randomness. To model these situations, one can often use stochastic partial differential equations(SPDEs) which roughly speaking, describe motions which are under the influence of some kind of randomness. Compared with the theory of partial differential equations, the theory of SPDEs is not well developed. Fortunately, this situation is changing quite rapidly; a lot of researchers have been studying SPDEs during the past decades and some major advances have been made. The foundations of the subject have been settled and one has the option of three different approaches; the Hilbert space approach, the martingale measure approach and the L_p space approach.The main aim of this proposal is to study the long term behaviour of a wide class of stochastic differential equations. More precisely, we propose to study a phenomenon called "intermittency" whereby for large times, the solutions of the SPDE have high peaks. Intermittency is actively studied in the special case where space is assumed to be a discrete lattice and so far only a small number of continuous space equations have been proved to exhibit this phenomenon. This proposal aims to show that a much wider class of SPDEs exhibit these kinds of behaviour. This will shed light on a lot of phenomena which involve randomness.
许多现象在随机输入的影响下演化。例如,DNA链的运动,太阳的内部结构以及粒子系统中的许多现象都涉及随机性。为了模拟这些情况,人们通常可以使用随机偏微分方程(SPDE),粗略地说,它描述了在某种随机性影响下的运动。与偏微分方程理论相比,随机偏微分方程的理论还不成熟。幸运的是,这种情况正在迅速改变;在过去的几十年里,许多研究人员一直在研究SPDE,并取得了一些重大进展。本文的主要目的是研究一类随机微分方程的长期性态。更确切地说,我们建议研究一种现象,称为“不稳定性”,即大的时间,解决方案的SPDE有很高的峰值。间歇性是在空间被假定为离散格的特殊情况下被积极研究的,到目前为止,只有少数连续空间方程被证明表现出这种现象。该提议旨在表明,更广泛的一类SPDE表现出这些行为。这将揭示许多涉及随机性的现象。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mean square polynomial stability of numerical solutions to a class of stochastic differential equations
- DOI:10.1016/j.spl.2014.06.002
- 发表时间:2014-04
- 期刊:
- 影响因子:0.8
- 作者:Mohammud Foondun;W. Liu;X. Mao
- 通讯作者:Mohammud Foondun;W. Liu;X. Mao
Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion
- DOI:10.1007/s40072-015-0045-y
- 发表时间:2014-06
- 期刊:
- 影响因子:0
- 作者:Mohammud Foondun;D. Khoshnevisan;Pejman Mahboubi
- 通讯作者:Mohammud Foondun;D. Khoshnevisan;Pejman Mahboubi
ON NON-EXISTENCE OF GLOBAL SOLUTIONS TO A CLASS OF STOCHASTIC HEAT EQUATIONS
- DOI:10.1090/proc/12036
- 发表时间:2012-08
- 期刊:
- 影响因子:0
- 作者:Mohammud Foondun;R. Parshad
- 通讯作者:Mohammud Foondun;R. Parshad
On the behaviour of stochastic heat equations on bounded domains
- DOI:
- 发表时间:2014-12
- 期刊:
- 影响因子:0
- 作者:Mohammud Foondun;E. Nualart
- 通讯作者:Mohammud Foondun;E. Nualart
Numerical stationary distribution and its convergence for nonlinear stochastic differential equations
- DOI:10.1016/j.cam.2014.08.019
- 发表时间:2015-03
- 期刊:
- 影响因子:0
- 作者:W. Liu;X. Mao
- 通讯作者:W. Liu;X. Mao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammud Foondun其他文献
Non-existence results for stochastic wave equations in one dimension
一维随机波动方程的不存在性结果
- DOI:
10.1016/j.jde.2022.02.038 - 发表时间:
2022-05-05 - 期刊:
- 影响因子:2.300
- 作者:
Mohammud Foondun;Eulalia Nualart - 通讯作者:
Eulalia Nualart
Ju l 2 01 9 The Osgood condition for stochastic partial differential equations
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mohammud Foondun - 通讯作者:
Mohammud Foondun
Spatial asymptotics and strong comparison principle for some fractional stochastic heat equations
部分分数随机热方程的空间渐近和强比较原理
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mohammud Foondun;E. Nualart - 通讯作者:
E. Nualart
Instantaneous everywhere-blowup of parabolic SPDEs
抛物线 SPDE 的瞬时到处爆炸
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
Mohammud Foondun;D. Khoshnevisan;E. Nualart - 通讯作者:
E. Nualart
Some properties of non-linear fractional stochastic heat equations on bounded domains
- DOI:
10.1016/j.chaos.2017.03.064 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:
- 作者:
Mohammud Foondun;Ngartelbaye Guerngar;Erkan Nane - 通讯作者:
Erkan Nane
Mohammud Foondun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
区域碳交易试点的运行机制及其经济影响研究---基于Term-Co2模型
- 批准号:71473242
- 批准年份:2014
- 资助金额:59.0 万元
- 项目类别:面上项目
长期间歇性缺氧抑制呼吸运动神经长时程易化的分子机制
- 批准号:81141002
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
激活γ-分泌酶促进海马长时程增强形成的机制
- 批准号:30500149
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Valuing all Voices: Using People with Lived Experience to Reduce Sedentary Behaviour in Long-Term Care Homes
重视所有声音:利用有生活经验的人来减少长期护理院的久坐行为
- 批准号:
480807 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Miscellaneous Programs
Strength and Long-term Behaviour of Masonry
砌体的强度和长期性能
- 批准号:
RGPIN-2018-03772 - 财政年份:2022
- 资助金额:
$ 12.73万 - 项目类别:
Discovery Grants Program - Individual
Long-term studies of bee social behaviour, ecology, and evolution
蜜蜂社会行为、生态和进化的长期研究
- 批准号:
RGPIN-2018-04078 - 财政年份:2022
- 资助金额:
$ 12.73万 - 项目类别:
Discovery Grants Program - Individual
Developing a data informed care planning improvement intervention in long-term care
制定长期护理中的数据知情护理计划改进干预措施
- 批准号:
470289 - 财政年份:2022
- 资助金额:
$ 12.73万 - 项目类别:
Operating Grants
Long-term behavioural and neural effects of vaporized delta-9-tetrahydracannabinol and nicotine co-use in adolescence
青春期汽化 delta-9-四氢大麻酚和尼古丁共同使用的长期行为和神经影响
- 批准号:
486630 - 财政年份:2022
- 资助金额:
$ 12.73万 - 项目类别:
Studentship Programs
Development of neuronal subtypes and local circuits in the hippocampus
海马神经元亚型和局部回路的发育
- 批准号:
10298128 - 财政年份:2021
- 资助金额:
$ 12.73万 - 项目类别:
Long-term evolution of plutonium waste-form candidates, with focus on radiation effects on dissolution behaviour.
钚废物候选形式的长期演变,重点关注辐射对溶解行为的影响。
- 批准号:
2597992 - 财政年份:2021
- 资助金额:
$ 12.73万 - 项目类别:
Studentship
Strength and Long-term Behaviour of Masonry
砌体的强度和长期性能
- 批准号:
RGPIN-2018-03772 - 财政年份:2021
- 资助金额:
$ 12.73万 - 项目类别:
Discovery Grants Program - Individual
Long-term studies of bee social behaviour, ecology, and evolution
蜜蜂社会行为、生态和进化的长期研究
- 批准号:
RGPIN-2018-04078 - 财政年份:2021
- 资助金额:
$ 12.73万 - 项目类别:
Discovery Grants Program - Individual
Development of neuronal subtypes and local circuits in the hippocampus
海马神经元亚型和局部回路的发育
- 批准号:
10617334 - 财政年份:2021
- 资助金额:
$ 12.73万 - 项目类别: