EMOTIVE - Extracting the Meaning Of Terse Information in a geo-Visualisation of Emotion
EMOTIVE - 在情感的地理可视化中提取简洁信息的含义
基本信息
- 批准号:EP/J020532/1
- 负责人:
- 金额:$ 11.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability for ordinary people to express and exchange their opinions and feelings has increased beyond all expectations in the past ten years of internet expansion and availability. To the military and national security agencies this has provided both opportunities and challenges. Opportunities have emerged in the sense of readily available awareness of discontent and oppositional movements and initiatives. Recent urban disturbances have illustrated the key role played by social networks in the fast-moving events of Summer 2011. The challenges have escalated due to the sheer number of sources of social interaction and public communication media. This research addresses some of these issues in a bold initiative to combine well established and considered science with the increasingly familiar tools of Web 2.0.Four of the most popular sources of the public exchange of ideas (email, social networks, such as Facebook, microblogs, such as Twitter and comments to newspaper editorials and high-profile stories) will be selectively monitored. Sensitive words and phrases which may be of concern to the military and national security agencies will be extracted by extending a Natural Language Processing technique already developed for email by the Principal Investigator. The team will develop an ontology (a rule-based linguistic database) in which the extracted words and phrases will be semantically filtered and restricted to a manageable set of agreed terms. An example of how the ontology will work can be illustrated by suggesting the number of ways the word 'looting' might be expressed in, for example, established vocabulary (raiding, pillaging, ransacking, etc.) as well as in urban and regional street language and text speak ( doin' over, scamming, etc.). The ontology will be trained to recognise the words and phrases, make semantic links between them and deliver one or more accepted descriptors to the analysts. EMOTIVE will monitor the traffic of sensitive words and phrases filtered through the ontology when applied to specific incidents, individuals and groups. Increased activity will be indicated by frequency of occurrence or severity, which will be presented through a concept cloud which uses the size of words as a metaphor for frequency and hence importance.Further to this, a second ontology will be created in which words and phrases that express emotion will be harnessed and this ontology will process the emotionally charged words and phrases extracted from the four sources described above in a similar way to the firstThe output of both ontologies will be linked, so that the monitoring analyst will be presented with a colour-coded indication of the strength of emotion attached to the language-based terms.The final feature in Emotive will be a geo interface to point to the location of the emotionally charged traffic. This interface will be refreshed every 60 seconds with the effect of helping to identify sensitive hot spots of communication and activities. Outputs from the system consisting of effectively presented new knowledge will enable defence and national security agencies both to predict and monitor selected events as they develop and will assist in the formulation of policy.It can be argued that the general public will be direct beneficiaries of this research in that the defence and national security agencies who act as guardians of public safety and order will be further equipped by this tool to identify, evaluate and ultimately safeguard the public from potentially harmful events.Defence and national agencies will already be experienced at monitoring these data sources but this tool adds an extra filter of analysis, it will work in almost real time, will amalgamate data from several sources if desired and will provide harmonised output.
在过去十年互联网的发展和普及中,普通人表达和交换意见和感受的能力已经超出了所有人的预期。对军队和国家安全机构来说,这既提供了机会,也提出了挑战。机会已经出现,因为人们随时可以意识到不满情绪和反对运动和倡议。最近的城市骚乱表明了社交网络在2011年夏季快速发展的事件中发挥的关键作用。由于社会互动和公共传播媒体的来源数量庞大,这些挑战已经升级。这项研究以一种大胆的举措解决了其中的一些问题,将联合收割机成熟的科学与日益熟悉的Web 2.0工具相结合。四种最流行的公共思想交流来源(电子邮件、社交网络(如Facebook)、微博(如Twitter)以及对报纸社论和高调报道的评论)将被有选择地监测。军事和国家安全机构可能关注的敏感单词和短语将通过扩展主要研究员已经为电子邮件开发的自然语言处理技术来提取。该小组将开发一个本体(一个基于规则的语言数据库),其中提取的单词和短语将被语义过滤,并限制为一组可管理的商定术语。本体如何工作的一个例子可以通过建议单词“抢劫”可能被表达的方式的数量来说明,例如,建立词汇表(raiding,pillaging,ransacking等)。以及在城市和地区的街头语言和文本说话(做'过,诈骗等)。本体将被训练来识别单词和短语,在它们之间建立语义链接,并向分析师提供一个或多个可接受的描述符。EMOTIVE将监控通过本体过滤的敏感单词和短语的流量,当应用于特定事件,个人和团体时。增加的活动将通过发生频率或严重程度来指示,这将通过使用单词大小作为频率和重要性的隐喻的概念云来呈现。第二本体将被创建,其中表达情感的单词和短语将被利用,并且该本体将处理从上述四个源中提取的充满情感的单词和短语,与第一个相似的方式。两个本体的输出将被链接,以便监控分析师将被呈现与基于语言的术语相关联的情感强度的颜色编码指示。Emotive中的最后一个特征将是地理界面,以指向情感化流量的位置。该界面将每60秒刷新一次,以帮助识别通信和活动的敏感热点。该系统的产出包括有效提供的新知识,将使国防和国家安全机构能够预测和监测发展中的选定事件,并协助制定政策,可以说,公众将是这项研究的直接受益者,因为作为公共安全和秩序监护人的国防和国家安全机构将进一步配备这一工具国防和国家机构在监测这些数据源方面已经很有经验,但这一工具增加了一个额外的分析过滤器,它将在几乎真实的时间内工作,如果需要,将合并来自几个来源的数据,并将提供协调一致的输出。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Role of Visualisations in Social Media Monitoring Systems
可视化在社交媒体监控系统中的作用
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Sykora, M
- 通讯作者:Sykora, M
Emotive ontology: extracting fine-grained emotions from terse, informal messages.
情感本体论:从简洁、非正式的消息中提取细粒度的情感。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Martin Sykora (Co-Author)
- 通讯作者:Martin Sykora (Co-Author)
Real-Time Detection, Tracking, and Monitoring of Automatically Discovered Events in Social Media
- DOI:10.3115/v1/p14-5007
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:M. Osborne;S. Moran;R. McCreadie;A. V. Lünen;M. Sykora;A. Cano;N. Ireson;Craig Macdonald;I. Ounis;Yulan He;Tom Jackson;F. Ciravegna;A. O'Brien
- 通讯作者:M. Osborne;S. Moran;R. McCreadie;A. V. Lünen;M. Sykora;A. Cano;N. Ireson;Craig Macdonald;I. Ounis;Yulan He;Tom Jackson;F. Ciravegna;A. O'Brien
Using Social Media to Analyse the Scottish Referendum Journey
利用社交媒体分析苏格兰公投之旅
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Jackson, TW
- 通讯作者:Jackson, TW
National Security and Social Media Monitoring: A Presentation of the EMOTIVE and Related Systems
- DOI:10.1109/eisic.2013.38
- 发表时间:2013-08
- 期刊:
- 影响因子:0
- 作者:M. Sykora;Thomas W. Jackson;A. O'Brien;Suzanne Elayan
- 通讯作者:M. Sykora;Thomas W. Jackson;A. O'Brien;Suzanne Elayan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Jackson其他文献
Validation of full resolution remote sensing reflectance from Sentinel-3 OLCI across optical gradients in moderately turbid transitional waters
在中等浑浊过渡水域中跨光学梯度验证 Sentinel-3 OLCI 的全分辨率遥感反射率
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gaia Gleratti;V. Martinez;Elizabeth C. Atwood;Stefan G. H. Simis;Thomas Jackson - 通讯作者:
Thomas Jackson
The Fetal Specific Gene emLIN28B/em Is Essential for Human Fetal B-Lymphopoiesis and Initiation of emKMT2A-AFF1+/em Infant Acute Lymphoblastic Leukemia
胎儿特异性基因LIN28B对人类胎儿B淋巴细胞生成以及KMT2A - AFF1阳性婴儿急性淋巴细胞白血病的起始至关重要
- DOI:
10.1182/blood-2024-198819 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:23.100
- 作者:
Rebecca E Ling;Thomas Jackson;Natalina Elliott;Joe W Cross;Lucy Hamer;Arundhati S Wuppalapati;Alastair L Smith;Catherine M Chahrour;Okan Sevim;Deena Iskander;Guanlin Wang;Sorcha I O'Byrne;Siobhan Rice;Joe R Harman;Bethan Psaila;Rhys G Morgan;Irene Roberts;Thomas A Milne;Anindita Roy - 通讯作者:
Anindita Roy
Expert Evaluation Study of an Autopoietic Model of Knowledge
知识自生成模型的专家评价研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:7
- 作者:
Paul Parboteeah;Thomas Jackson - 通讯作者:
Thomas Jackson
Repurposing digoxin for geroprotection in patients with frailty and multimorbidity
将地高辛重新用于虚弱和多病共存患者的抗衰老保护
- DOI:
10.1016/j.arr.2023.101860 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:12.400
- 作者:
Helena Lee;Daisy Wilson;Karina V. Bunting;Dipak Kotecha;Thomas Jackson - 通讯作者:
Thomas Jackson
Guess who’s looking : the effects of anticipated audience on self-presentation behaviour
猜猜谁在看:预期观众对自我展示行为的影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Thomas Jackson - 通讯作者:
Thomas Jackson
Thomas Jackson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Jackson', 18)}}的其他基金
RIA: Conjugated Polymer Thin Film Transistors for Active Liquid Crystal Displays
RIA:用于有源液晶显示器的共轭聚合物薄膜晶体管
- 批准号:
9409444 - 财政年份:1994
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Development of a Cooperative Internship Program (Phase I)
开展合作实习项目(第一期)
- 批准号:
7517976 - 财政年份:1975
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
- 批准号:
2327456 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Extracting the detrimental effects of amyloid beta oligomer using contextual learning and controlling it with antagonist molecules
使用情境学习提取β淀粉样蛋白寡聚体的有害影响并用拮抗剂分子控制它
- 批准号:
23K06348 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Extracting Spectral Information from Noisy Quantum Data
从噪声量子数据中提取光谱信息
- 批准号:
2310182 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Extracting energy from air: mechanism of a bacterial hydrogenase
从空气中提取能量:细菌氢化酶的机制
- 批准号:
DP230103080 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Discovery Projects
Verifying AI systems by extracting automata via learning
通过学习提取自动机来验证人工智能系统
- 批准号:
2791125 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Studentship
Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
- 批准号:
2300382 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
- 批准号:
2246811 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Extracting value from onion waste - Evaluation of pyrolysis to improve the sustainability of onion production and reduce costs on the journey to Net Zero
从洋葱废物中提取价值 - 评估热解以提高洋葱生产的可持续性并降低净零成本
- 批准号:
10050903 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Collaborative R&D
Extracting subtle hints for new phenomena at the Large Hadron Collider
在大型强子对撞机中提取新现象的微妙暗示
- 批准号:
DP230101142 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Discovery Projects