Non-homogeneous random walks

非齐次随机游走

基本信息

  • 批准号:
    EP/J021784/1
  • 负责人:
  • 金额:
    $ 11.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Random walks are fundamental models in stochastic process theory that exhibit deep connections to important areas of pure and applied mathematics and enjoy broad applications across the sciences and beyond. Generally, a random walk is a stochastic process describing the motion of a particle (or random walker) in space. The particle's trajectory is represented by a series of random jumps at discrete instants in time. Fundamental questions for these models involve the long-time asymptotic behaviour of the walker.Random walks have a rich history involving several disciplines. Classical one-dimensional random walks were first studied several hundred years ago as models for games of chance, such as the so-called gambler's ruin problem. In his 1900 thesis, Louis Bachelier applied similar reasoning to his model of stock prices. Many-dimensional random walks were first studied at around the same time, arising from work of pioneers of science in diverse applications such as acoustics (Lord Rayleigh's theory of sound developed from about 1880), biology (Karl Pearson's 1906 theory of random migration of species), and statistical physics (Einstein's theory of Brownian motion developed during 1905-08). The mathematical importance of the random walk problem became clear after Polya's work in the 1920s, and over the last 60 years or so beautiful connections have emerged linking random walk theory to influential areas of mathematics such as harmonic analysis, potential theory, combinatorics, and spectral theory. Random walk models have continued to find new and important applications in many highly active domains of modern science; specific recent developments include for example modelling of microbe locomotion in microbiology, polymer conformation in molecular chemistry, and financial systems in economics. Spatially homogeneous random walks, in which the probabilistic nature of the jumps is the same regardless of the present spatial location of the walker, are the subject of a substantial literature. In many modelling applications, the classical assumption of spatial homogeneity is unrealistic: the behaviour of the random walker may depend on the present location in space. Applications thus motivate the study of non-homogeneous random walks. Moreover, mathematical motivation arises naturally from the point of view of deepening our understanding, via rigorous mathematical proofs, of fundamental research problems: concretely, non-homogeneous random walks are the natural setting in which to probe near-critical behaviour and obtain a finer understanding of phase transitions present in the classical random walk models. The proposed research is part of a broad research programme to analyse near critical stochastic systems. Non-homogeneous random walks can typically not be studied by the techniques generally used for homogeneous random walks: new methods (and, just as importantly, new intuitions) are required. Naturally, the analysis of near-critical systems is more challenging and delicate than that for systems that are far from criticality. The methodology is based on martingale ideas. The methods are robust and powerful, and it is to be expected that methods developed during the project will be applicable to many other near-critical models, including those with applications across modern probability theory and beyond, to areas such as queueing theory, interacting particle systems, and random media.
随机游动是随机过程理论中的基本模型,与纯数学和应用数学的重要领域有着深刻的联系,在科学和其他领域有着广泛的应用。通常,随机行走是描述粒子(或随机步行者)在空间中的运动的随机过程。粒子的轨迹由一系列在离散时刻的随机跳跃来表示。这些模型的基本问题涉及到步行者的长时间渐近行为。随机行走有着丰富的历史,涉及到几个学科。经典的一维随机游动在几百年前首次被研究为机会博弈的模型,例如所谓的赌徒破产问题。在1900年的论文中,路易斯·巴舍利耶(Louis Bachelier)将类似的推理应用于他的股票价格模型。多维随机游动是在大约同一时间首次被研究的,它起源于科学先驱在不同应用领域的工作,如声学(瑞利勋爵的声音理论从1880年发展起来),生物学(卡尔·皮尔逊的1906年物种随机迁移理论)和统计物理学(爱因斯坦的布朗运动理论在1905-08年发展起来)。在波利亚于20世纪20年代的工作之后,随机游走问题在数学上的重要性变得清晰起来,在过去的60年左右,出现了将随机游走理论与有影响力的数学领域联系起来的美丽联系,如调和分析,势理论,组合学和谱理论。随机游走模型在现代科学的许多高度活跃的领域中不断发现新的重要应用;最近的具体发展包括例如微生物学中的微生物运动建模,分子化学中的聚合物构象,以及经济学中的金融系统。空间齐次随机游动,其中跳跃的概率性质是相同的,无论步行者的当前空间位置,是大量文献的主题。在许多建模应用中,空间均匀性的经典假设是不现实的:随机步行者的行为可能取决于空间中的当前位置。因此,应用激励非齐次随机游动的研究。此外,数学动机自然产生的观点,加深我们的理解,通过严格的数学证明,基础研究问题:具体地说,非齐次随机游动是自然的设置,在其中探测近临界行为,并获得更好的理解相变存在于经典的随机游动模型。 拟议的研究是一个广泛的研究计划,以分析近临界随机系统的一部分。非齐次随机游动通常不能用齐次随机游动通常使用的技术来研究:需要新的方法(同样重要的是,新的直觉)。自然,对近临界系统的分析比对远离临界的系统的分析更具挑战性和更微妙。该方法是基于鞅的思想。该方法是强大的,强大的,它是可以预期的,在项目期间开发的方法将适用于许多其他近临界模型,包括那些与应用程序在现代概率论和超越,如量子理论,相互作用粒子系统和随机介质等领域。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-homogeneous Random Walks: Lyapunov Function Methods for Near-Critical Stochastic Systems
  • DOI:
    10.1017/9781139208468
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Menshikov;S. Popov;A. Wade
  • 通讯作者:
    M. Menshikov;S. Popov;A. Wade
New Constructions and Bounds for Winkler's Hat Game
温克勒帽子游戏的新结构和界限
Non-homogeneous random walks on a semi-infinite strip
半无限带上的非齐次随机游走
A radial invariance principle for non-homogeneous random walks
非齐次随机游走的径向不变性原理
Anomalous recurrence properties of many-dimensional zero-drift random walks
多维零漂移随机游走的反常递推性质
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Wade其他文献

An interdisciplinary modelling approach assessing the cost-effectiveness of agri-environmental measures on reducing nutrient concentration to WFD thresholds under climate change: the case of the Louros catchment
  • DOI:
    10.1007/s12351-014-0158-5
  • 发表时间:
    2014-07-19
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Dimitris Skuras;Andrew Wade;Demetrios Psaltopoulos;Paul Whitehead;Alexandra Kontolainou;Martin Erlandsson
  • 通讯作者:
    Martin Erlandsson
A founder mutation in BBS2 is responsible for Bardet‐Biedl syndrome in the Hutterite population: utility of SNP arrays in genetically heterogeneous disorders
BBS2 的创始人突变导致哈特派人群中的 Bardet-Biedl 综合征:SNP 阵列在遗传异质性疾病中的效用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    A. Innes;K. Boycott;E. Puffenberger;E. Puffenberger;D. Redl;Ian M. MacDonald;A. Chudley;C. Beaulieu;R. Perrier;T. Gillan;Andrew Wade;J. Parboosingh
  • 通讯作者:
    J. Parboosingh
WCN24-1719 SUPPORT AND ADVOCACY FOR PAEDIATRIC NEPHROLOGY: THE IBADAN, NIGERIA – CALGARY, CANADA SISTER RENAL CENTRE (SRC) PROGRAM
  • DOI:
    10.1016/j.ekir.2024.02.1332
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adebowale Ademola;Susan Samuel;Andrew Wade;Lorraine Hamiwka;Jeffrey Pollard;Marinka Twilt;Julian Midgley;Adanze Asinobi
  • 通讯作者:
    Adanze Asinobi
Superdiffusive planar random walks with polynomial space–time drifts
  • DOI:
    10.1016/j.spa.2024.104420
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Conrado da Costa;Mikhail Menshikov;Vadim Shcherbakov;Andrew Wade
  • 通讯作者:
    Andrew Wade
Semi-infinite particle systems with exclusion interaction and heterogeneous jump rates
具有排斥相互作用和异质跳跃率的半无限粒子系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Menshikov;Serguei Popov;Andrew Wade
  • 通讯作者:
    Andrew Wade

Andrew Wade的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Wade', 18)}}的其他基金

Anomalous diffusion via self-interaction and reflection
通过自相互作用和反射的异常扩散
  • 批准号:
    EP/W00657X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Research Grant
The Multi-Scale Response of Water Quality, Biodiversity and C Sequestration to Coupled Macronutrient Cycling from Source to Sea
水质、生物多样性和碳封存对从源头到海洋的耦合常量营养素循环的多尺度响应
  • 批准号:
    NE/J011967/1
  • 财政年份:
    2013
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Research Grant
Hydrological extremes and feedbacks in the changing water cycle
变化的水循环中的水文极端情况和反馈
  • 批准号:
    NE/I00677X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Research Grant
Novel technologies for in situ environmental monitoring: linking sensor development to improved pollutant transport models.
原位环境监测新技术:将传感器开发与改进的污染物传输模型联系起来。
  • 批准号:
    EP/G019967/1
  • 财政年份:
    2009
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Research Grant

相似国自然基金

均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
  • 批准号:
    82372089
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
伽罗华环上重根常循环码的一些问题研究
  • 批准号:
    11626077
  • 批准年份:
    2016
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
代数的 Leading homogeneous (monomial) 代数及其应用研究
  • 批准号:
    10971044
  • 批准年份:
    2009
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAS:Improving the Activity of Homogeneous Mn Catalysts for the Oxygen Reduction Reaction
CAS:提高均相锰催化剂的氧还原反应活性
  • 批准号:
    2348515
  • 财政年份:
    2024
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Standard Grant
Structure-Optoelectronic Property Relationships in Homogeneous and Heterogeneous/Gradient Alloyed Colloidal I-(II)-III-VI Quantum Dots
均质和异质/梯度合金胶体 I-(II)-III-VI 量子点的结构-光电性质关系
  • 批准号:
    2304949
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Standard Grant
Mechanistic Investigations in Homogeneous Catalysis
均相催化机理研究
  • 批准号:
    2892843
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Generation of A High-Density, Axially Homogeneous Helicon Plasma for the AWAKE Wakefield Accelerator Project
为 AWAKE Wakefield 加速器项目生成高密度、轴向均匀螺旋等离子体
  • 批准号:
    2308846
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Standard Grant
Homogeneous hydrocarbon oxidation using nitrous oxide as a sustainable feedstock
使用一氧化二氮作为可持续原料进行均相烃氧化
  • 批准号:
    2881399
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
  • 批准号:
    2321093
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Standard Grant
Preparation of homogeneous cellulose nanofiber/polymer composite and design of interfacial structure
均质纤维素纳米纤维/聚合物复合材料的制备及界面结构设计
  • 批准号:
    23H02270
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Weyl groups and Weyl chamber associated to a Cartan decomposition for reductive real spherical homogeneous space
与还原实球形均匀空间的嘉当分解相关的韦尔群和韦尔室
  • 批准号:
    23K03037
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the generation mechanism of homogeneous dielectric barrier discharge in atmospheric pressure air by surface charge density measurement
通过表面电荷密度测量阐明大气压空气中均匀介质阻挡放电的产生机制
  • 批准号:
    23K03824
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: ECO-CBET: Coupled homogeneous and heterogeneous processes for an environmentally sustainable lignin-first biorefinery
合作研究:ECO-CBET:环境可持续的木质素优先生物精炼厂的均质和异质耦合工艺
  • 批准号:
    2218841
  • 财政年份:
    2022
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了