Engineering Nonlinearity

工程非线性

基本信息

  • 批准号:
    EP/K003836/2
  • 负责人:
  • 金额:
    $ 480.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is to transform the design and manufacture of structural systems by relieving the bottleneck caused by the current practice of restricting designs to a linear dynamic regime. Our ambition is to not only address the challenge of dealing with nonlinearity, but to unlock the huge potential which can be gained from exploiting its positive attributes. The outputs will be a suite of novel modelling and control techniques which can be used directly in the design processes for structural systems, which we will demonstrate on a series of industry based experimental demonstrators. These design tools will enable a transformation in the performance of engineering structural systems which are under rapidly increasing demands from technological, economic and environmental pressures. The performance of engineering structures and systems is governed by how well they behave in their operating environment. For a significant number of engineering sectors, such as wind power generation, automotive, medical robotics, aerospace and large civil infrastructure, dynamic effects dominate the operational regime. As a result, understanding structural dynamics is crucial for ensuring that we have safe, reliable and efficient structures. In fact, the related mathematical problems extend to other modelling problems encountered in other important research areas such as systems biology, physiological modelling and information technology.So what exactly is the problem we are seeking to address in this proposal? Typically, when the behaviour of an engineering system is linear, computer simulations can be used to make very accurate predictions of its dynamic behaviour. The concept of end-to-end simulation and virtual prototyping, verification and testing has become a key paradigm across many sectors. The problem with this simulation based approach is that it is built on implicit assumptions of repeatability and linearity. For example, many structural analysis methods are based on the concept of a frequency domain charaterisation, which assumes that response of the system can be characterised by linear superposition of the response to each frequency seperately. But, the response of nonlinear systems is known to display amplitude dependence, sensitivity to transient effects in the forcing, and potential bistability or multiplicity of outcome for the same input frequency. As a result, when the system is nonlinear (which is nearly always the case for a large number of important industrial problems) it is almost impossible to make dynamic predictions without introducing very limiting approximationsand simplifications. For example, throughout recent history, there have been many examples of unwanted vibrations; Failure of the Tacoma Narrows bridge (1940); cable-deck coupled vibrations on the DongTing Lake Bridge (1999); human induced vibration on the Millennium Bridge (2000); NASA Helios failure (2003); Coupling between thrusters and natural frequencies of the flexible structure on the International Space Station (2009); Landing gear shimmy.In many cases, the complexity of modern designs has outstripped our ability to understand their dynamic behaviour in detail. Even with the benefit of high power computing, which has enabled engineers to carry out detailed simulations, interpreting results from these simulations is a fundamental bottleneck, and it would seem that our ability to match experimental results is not improving, due primarily to the combination of random and uncertain effects and the failure of the linear superposition approach. As a result a new type of structural dynamics, which fully embraces nonlinearity, is urgently needed to enable the most efficient design and manufacture of the next generation of engineering structures.
该提案的目的是通过缓解目前将设计限制在线性动态范围内的做法所造成的瓶颈,来改变结构系统的设计和制造。我们的目标不仅是解决处理非线性的挑战,而且要释放利用其积极属性所能获得的巨大潜力。输出将是一套新的建模和控制技术,可直接用于结构系统的设计过程中,我们将在一系列基于工业的实验演示。这些设计工具将使工程结构系统的性能发生转变,这些系统正面临着技术、经济和环境压力的快速增长。工程结构和系统的性能取决于它们在运行环境中的表现。对于相当多的工程部门,如风力发电,汽车,医疗机器人,航空航天和大型民用基础设施,动态效应占主导地位的操作制度。因此,了解结构动力学对于确保我们拥有安全、可靠和高效的结构至关重要。事实上,有关的数学问题已延伸至其他重要的研究范畴,例如系统生物学、生理模型及资讯科技等,所涉及的模型问题,究竟我们这项建议所要解决的问题是甚么呢?通常,当工程系统的行为是线性的时,计算机模拟可以用于对其动态行为进行非常准确的预测。端到端仿真和虚拟原型、验证和测试的概念已成为许多领域的关键范式。这种基于模拟的方法的问题在于,它是建立在可重复性和线性的隐含假设之上的。例如,许多结构分析方法都是基于频域特性的概念,它假设系统的响应可以通过对每个频率的响应的线性叠加来表征。但是,已知非线性系统的响应显示振幅依赖性,对强迫中的瞬态效应的敏感性,以及对于相同输入频率的潜在双稳性或结果的多重性。因此,当系统是非线性的(这几乎总是大量的重要工业问题的情况下),它几乎是不可能作出动态预测,而不引入非常有限的近似和简化。例如,纵观近代历史,有许多不必要的振动的例子;塔科马海峡大桥的故障(1940年);洞庭湖大桥的电缆-桥面耦合振动(1999年);千禧桥的人为振动(2000年); NASA Helios故障(2003年);推进器与国际空间站柔性结构自然频率之间的耦合(2009年);起落架摆振:在许多情况下,现代设计的复杂性已经超出了我们详细了解其动态行为的能力。即使有高功率计算的好处,使工程师能够进行详细的模拟,解释这些模拟的结果是一个根本的瓶颈,而且似乎我们匹配实验结果的能力并没有提高,主要是由于随机和不确定性效应的组合以及线性叠加方法的失败。因此,迫切需要一种新型的结构动力学,它完全包含非线性,使最有效的设计和制造的下一代工程结构。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic Kernel Selection for Gaussian Processes Regression with Approximate Bayesian Computation and Sequential Monte Carlo
  • DOI:
    10.3389/fbuil.2017.00052
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    3
  • 作者:
    A. B. Abdessalem;N. Dervilis;D. Wagg;K. Worden
  • 通讯作者:
    A. B. Abdessalem;N. Dervilis;D. Wagg;K. Worden
Illustration of a Sequential Monte Carlo Approach for Simultaneous Nonlinear Model Selection and Parameter Estimation.
用于同时非线性模型选择和参数估计的顺序蒙特卡罗方法的图示。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abdessalem, A.B.
  • 通讯作者:
    Abdessalem, A.B.
A model validation approach for nonlinear systems based on novelty detection
基于新颖性检测的非线性系统模型验证方法
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antoniadou, I
  • 通讯作者:
    Antoniadou, I
Aspects of structural health and condition monitoring of offshore wind turbines.
Identification of nonlinear dynamical systems using approximate Bayesian computation based on a sequential Monte Carlo sampler
使用基于顺序蒙特卡罗采样器的近似贝叶斯计算识别非线性动力系统
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abdessalem, A.B.
  • 通讯作者:
    Abdessalem, A.B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Wagg其他文献

基于速度的显式等效力控制方法的研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    周惠蒙;吴斌;王涛;David Wagg;戴君武
  • 通讯作者:
    戴君武

David Wagg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Wagg', 18)}}的其他基金

Digital twins for improved dynamic design
用于改进动态设计的数字孪生
  • 批准号:
    EP/R006768/1
  • 财政年份:
    2018
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Research Grant
Engineering Nonlinearity
工程非线性
  • 批准号:
    EP/K003836/1
  • 财政年份:
    2012
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Research Grant
Nonlinear Modal Testing and Analysis of Multiple Degree of Freedom Engineering Structures using a Frequency Domain method
使用频域方法进行多自由度工程结构的非线性模态测试和分析
  • 批准号:
    EP/I030387/1
  • 财政年份:
    2011
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Research Grant
Experimental bifurcation analysis for hybrid testing methods 2
混合测试方法的实验分岔分析2
  • 批准号:
    EP/F030711/1
  • 财政年份:
    2008
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Research Grant
NETWORK: Hybrid Numerical-Experimental Testing for Complex Engineering Systems
网络:复杂工程系统的混合数值实验测试
  • 批准号:
    EP/C548043/1
  • 财政年份:
    2006
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Research Grant
Bristol Adaptive Structures Workshop 2006
布里斯托尔自适应结构研讨会 2006
  • 批准号:
    EP/D041791/1
  • 财政年份:
    2006
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Research Grant

相似海外基金

Overcoming nonlinearity in short-reach optical communication
克服短距离光通信中的非线性
  • 批准号:
    DP230101493
  • 财政年份:
    2023
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Discovery Projects
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
  • 批准号:
    2329399
  • 财政年份:
    2023
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Standard Grant
Multi-core fiber sensing using geometrical phase nonlinearity of optical polarization
利用光学偏振的几何相位非线性进行多芯光纤传感
  • 批准号:
    23K04616
  • 财政年份:
    2023
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinearity in Reaction-Diffusion and Kinetic Equations
反应扩散和动力学方程中的非线性
  • 批准号:
    2204615
  • 财政年份:
    2022
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Standard Grant
Study of Lamb wave frequency mixing by interfacial nonlinearity toward nondestructive evaluation of closed defects
界面非线性兰姆波混频研究对闭合缺陷的无损评价
  • 批准号:
    22H01361
  • 财政年份:
    2022
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Time variation, nonlinearity and heterogeneity mechanics of tissues: application to the respiratory system
组织的时间变化、非线性和异质性力学:在呼吸系统中的应用
  • 批准号:
    RGPIN-2017-06929
  • 财政年份:
    2021
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Co-nonlinearity Analysis Methods Leading to Novel Knowledge Awareness
共非线性分析方法的开发和应用导致新知识意识
  • 批准号:
    21K12018
  • 财政年份:
    2021
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-BSF: Nonlinearity, Randomness, and Dynamics: Vistas into the Extreme Mechanics of Non-Euclidean Sheets
NSF-BSF:非线性、随机性和动力学:非欧几里得片的极端力学展望
  • 批准号:
    2108124
  • 财政年份:
    2021
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Standard Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
  • 批准号:
    21H00993
  • 财政年份:
    2021
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Movable-Nonlinearity Modeling for Successive Analyses of Very Flexible Structures
用于连续分析非常灵活的结​​构的可动非线性建模
  • 批准号:
    21K14341
  • 财政年份:
    2021
  • 资助金额:
    $ 480.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了