Graphene-based atom chips: a high-performance platform for cold-atom quantum technologies

基于石墨烯的原子芯片:冷原子量子技术的高性能平台

基本信息

  • 批准号:
    2602804
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

The project will develop graphene atom chips that reduce (by orders of magnitude) the atom loss rate and spatial scale of the atom trapping potential, as required for portable chip-based quantum sensors. The chips will enable the creation and manipulation of atomic Bose-Einstein condensates with less stringent vacuum pressure requirements than present devices, thus assisting the scalable industry manufacture of chip-based quantum sensors and clocks.Atom chips use current-carrying microfabricated wires to create a magnetic field and thereby control nearby ultracold atoms. They exhibit robust room-temperature operation and are key components of cold-atom-based quantum sensor/clock technologies1. Existing chips use metallic conductors on bulk substrates. High spatio-temporal noise in the wires, and the large Casimir-Polder attraction of atoms to the substrate, makes the atom clouds fragment and deplete rapidly unless they are held within 5 from the chip. This limits miniaturisation of the chips, the potential landscapes that they produce, and prevents coherent quantum coupling of electrons in the atoms to those in the chips1.This project aims to transform atom-chip performance by exploiting conductors within two-dimensional electron gases in graphene and other 2D materials. Our recent work indicates that these structures will reduce the atom-surface separation and power consumption of the chip by 2 and 5 orders of magnitude respectively and increase the atom cloud's lifetime by 4 orders of magnitude - to minutes - compared with metallic conductors.So far, our work has focused on graphene/boron nitride structures, which are promising for transistors and high-frequency electronics2. Using similar structures for atom chips opens the possibility of dual applications in electronic and cold-atom quantum devices. We now need to develop graphene atom-chip demonstrators, based on established materials such as SiC, to demonstrate the power of two-dimensional materials as a platform for quantum sensors and clocks. Existing SiC-based graphene Hall bars3, developed for quantum resistance metrology, look ideal for proof-of-principle studies and subsequent optimisation. The project will develop atom chips based on graphene and other 2D material multilayers by:1. Calculating atom trap profiles and lifetimes for existing graphene Hall bars, taking into account spatial imperfections and atom loss due to Johnson noise, using Green function models to relate the noise characteristics to the electromagnetic reflection coefficients of the multilayers, tunnelling and 3-body processes.2. Undertaking detailed analysis of experiments on existing SiC-based Hall bars: both their electrical properties and performance as an atom chip trap.3. Simulating the dynamics of trapped atom clouds using Stochastic Projected Gross-Pitaevskii models.4. Designing better samples containing multiple 2D layers to enhance functionality.5. Undertaking theoretical studies of experiments to be performed on these improved samples by collaborators in Germany.
该项目将开发石墨烯原子芯片,根据便携式芯片量子传感器的要求,降低原子损失率和原子捕获势的空间尺度(减少几个数量级)。这些芯片将能够以比现有设备更宽松的真空压力要求来创建和操纵原子玻色-爱因斯坦凝聚体,从而有助于基于芯片的量子传感器和时钟的可扩展工业制造。原子芯片使用载流微加工线来创建磁场,从而控制附近的超冷原子。它们表现出强大的室温运行能力,是基于冷原子的量子传感器/时钟技术的关键组件1。现有芯片在块状基板上使用金属导体。导线中的高时空噪声以及原子对基板的大卡西米尔-波尔德吸引力,使原子云迅速破碎和耗尽,除非它们与芯片的距离保持在 5 以内。这限制了芯片的小型化及其产生的潜在景观,并阻止了原子中的电子与芯片中的电子的相干量子耦合1。该项目旨在通过利用石墨烯和其他二维材料中的二维电子气内的导体来改变原子芯片的性能。我们最近的工作表明,与金属导体相比,这些结构将分别减少芯片的原子表面分离和功耗 2 个和 5 个数量级,并将原子云的寿命增加 4 个数量级(达到分钟)。到目前为止,我们的工作主要集中在石墨烯/氮化硼结构上,这种结构在晶体管和高频电子器件中很有前景。在原子芯片上使用类似的结构开启了在电子和冷原子量子设备中双重应用的可能性。我们现在需要开发基于 SiC 等现有材料的石墨烯原子芯片演示器,以展示二维材料作为量子传感器和时钟平台的强大功能。现有的基于碳化硅的石墨烯霍尔棒3是为量子电阻计量而开发的,看起来非常适合原理验证研究和后续优化。该项目将通过以下方式开发基于石墨烯和其他二维材料多层的原子芯片:1。计算现有石墨烯霍尔棒的原子陷阱轮廓和寿命,考虑空间缺陷和约翰逊噪声引起的原子损失,使用格林函数模型将噪声特性与多层、隧道和三体过程的电磁反射系数联系起来。2.对现有SiC基霍尔棒的实验进行详细分析:它们的电学特性和作为原子芯片陷阱的性能。 3.使用随机投影Gross-Pitaevskii模型模拟捕获原子云的动力学。 4.设计包含多个 2D 层的更好样本以增强功能。5。由德国的合作者对这些改进的样品进行实验的理论研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Synchrotron Operando Spectroscopy for Electrochemical reduction of Single-Atom Alloy Ca talysts
单原子合金催化剂电化学还原的同步加速器操作光谱
  • 批准号:
    22KF0074
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Oxidative destruction of refractory organic matter by titania-based metal single-atom co-catalyst
二氧化钛基金属单原子助催化剂氧化破坏难降解有机物
  • 批准号:
    22KF0180
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
AtomTRAIN: Atom-based Transportation Resilience with Atom Interferometer Navigation
AtomTRAIN:基于原子的运输弹性与原子干涉仪导航
  • 批准号:
    10084906
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Small Business Research Initiative
EAGER: Quantum Manufacturing: Robust Atom-based Silicon Quantum Devices
EAGER:量子制造:强大的基于原子的硅量子器件
  • 批准号:
    2240337
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Developing Techniques for Atom-Based Gravitational Wave Detection and Dark Matter Searches with a Multiplexed Optical Lattice Clock
职业:利用多路复用光学晶格钟开发基于原子的引力波探测和暗物质搜索技术
  • 批准号:
    2143870
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of Fast and Accurate Computational Chemistry Methods based on Atom-Centred Potentials and their Application to Crystal Structure Prediction
基于原子中心势的快速准确计算化学方法的发展及其在晶体结构预测中的应用
  • 批准号:
    RGPIN-2021-03080
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Precision Metrology Using Coherent Transient Effects and Cold Atom Interferometry Based On Homebuilt, Auto-locked Laser Systems
使用基于自制自动锁定激光系统的相干瞬态效应和冷原子干涉测量的精密计量
  • 批准号:
    RGPIN-2020-06114
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
ExpandQISE: Track 2: Neutral Atom Based Quantum Information Processing
ExpandQISE:轨道 2:基于中性原子的量子信息处理
  • 批准号:
    2228725
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantum Gas Jet-based Helium Atom Microscope (qHAM)
基于量子气体喷射的氦原子显微镜 (qHAM)
  • 批准号:
    10004615
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了