CVD enabled Graphene Technology and Devices (GRAPHTED)
支持 CVD 的石墨烯技术和器件 (GRAPHTED)
基本信息
- 批准号:EP/K016636/1
- 负责人:
- 金额:$ 291.91万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphene is a single layer of graphite just one atom thick. As a material it is completely new - not only the thinnest ever but also the strongest. It is almost completely transparent, yet as a conductor of electricity it performs as well or even better than copper. Since the 2010 Nobel Prize for Physics was awarded to UK researchers in this field, fundamental graphene research has attracted much investment by industry and governments around the world, and has created unprecedented excitement. There have been numerous proof-of concept demonstrations for a wide range of applications for graphene. Many applications require high quality material, however, most high quality graphene to date is made by exfoliation with scotch tape from graphite flakes. This is not a manufacturable route as graphene produced this way is prohibitively expensive, equivalent to £10bn per 12" wafer. For high quality graphene to become commercially viable, its price needs to be reduced to £30-100 per wafer, a factor of 100 million. Hence graphene production and process technology is the key bottleneck to be overcome in order to unlock its huge application potential. Overcoming this bottleneck lies at the heart of this proposal. Our proposal aims to develop the potential of graphene into a robust and disruptive technology. We will use a growth method called chemical vapour deposition (CVD) as the key enabler, and address the key questions of industrial materials development. CVD was the growth method that opened up diamond, carbon nanotubes and GaN to industrial scale production. Here it will be developed for graphene as CVD has the potential to give graphene over large areas at low cost and at a quality that equals that of the best exfoliated flakes. CVD is also a quite versatile process that enables novel strategies to integrate graphene with other materials into device architectures. In collaboration with leading industrial partners Aixtron UK, Philips, Intel, Thales and Selex Galileo, we will develop novel integration routes for a diverse set of near-term as well as future applications, for which graphene can outperform current materials and allows the use of previously impossible device form factors and functionality. We will integrate graphene for instance as a transparent conductor into organic light emitting diodes that offer new, efficient and environmentally friendly solutions for general lighting, including a flexible form factor that could revolutionize traditional lighting designs. We will also integrate graphene into liquid crystal devices that offer ultra high resolution and novel optical storage systems. Unlike currently used materials, graphene is also transparent in the infrared range, which is of great interest for many sensing applications in avionics, military imaging and fire safety which we will explore. Furthermore, we propose to develop a carbon based interconnect technology to overcome the limitations Cu poses for next generation microelectronics. This is a key milestone in the semiconductor industry roadmap. As a potential disruptive future technology, we propose to integrate graphene into so called lab-on-a-chip devices tailored to rapid single-molecule biosensing. These are predicted to revolutionize clinical analysis in particular regarding DNA and protein structure determination.
石墨烯是一层只有一个原子厚的石墨。作为一种全新的材料,它不仅是有史以来最薄的,而且是最坚固的。它几乎是完全透明的,但作为导电体,它的性能与铜一样好,甚至更好。自2010年诺贝尔物理学奖授予英国在该领域的研究人员以来,石墨烯基础研究吸引了世界各地工业界和政府的大量投资,并创造了前所未有的兴奋。对于石墨烯的广泛应用,已经有许多概念验证演示。许多应用需要高质量的材料,然而,迄今为止,大多数高质量的石墨烯是通过用透明胶带从石墨薄片剥离而制成的。这不是一条可制造的路线,因为以这种方式生产的石墨烯非常昂贵,相当于每12”晶片100亿英镑。为了使高质量的石墨烯在商业上可行,其价格需要降低到每片晶圆30-100英镑,即1亿英镑。因此,石墨烯的生产和加工技术是释放其巨大应用潜力的关键瓶颈。克服这一瓶颈是这项建议的核心。我们的提案旨在将石墨烯的潜力开发成一种强大的颠覆性技术。我们将使用一种称为化学气相沉积(CVD)的生长方法作为关键推动因素,并解决工业材料开发的关键问题。CVD是将金刚石、碳纳米管和GaN开辟为工业规模生产的生长方法。在这里,它将被开发用于石墨烯,因为CVD有可能以低成本和与最佳剥离薄片相同的质量在大面积上提供石墨烯。CVD也是一种非常通用的工艺,可以采用新的策略将石墨烯与其他材料集成到器件架构中。通过与领先的工业合作伙伴Aixtron UK,Philips,Intel,Thales和Selex Galileo合作,我们将为各种近期和未来应用开发新的集成路线,石墨烯可以超越当前材料,并允许使用以前不可能的设备形状因子和功能。例如,我们将石墨烯作为透明导体集成到有机发光二极管中,为普通照明提供新的,高效的和环保的解决方案,包括可以彻底改变传统照明设计的灵活形状因素。我们还将石墨烯集成到液晶设备中,提供超高分辨率和新型光存储系统。与目前使用的材料不同,石墨烯在红外线范围内也是透明的,这对于我们将探索的航空电子设备,军事成像和消防安全中的许多传感应用非常感兴趣。此外,我们建议开发一种碳基互连技术,以克服铜对下一代微电子的限制。这是半导体行业路线图中的一个重要里程碑。作为一种潜在的颠覆性未来技术,我们建议将石墨烯集成到所谓的芯片实验室设备中,以实现快速的单分子生物传感。预计这些技术将彻底改变临床分析,特别是关于DNA和蛋白质结构测定。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intrinsic terahertz plasmon signatures in chemical vapour deposited graphene
- DOI:10.1063/1.4821157
- 发表时间:2013-09
- 期刊:
- 影响因子:4
- 作者:S. Badhwar;J. Šibík;P. Kidambi;H. Beere;J. Zeitler;S. Hofmann;D. Ritchie
- 通讯作者:S. Badhwar;J. Šibík;P. Kidambi;H. Beere;J. Zeitler;S. Hofmann;D. Ritchie
Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide
- DOI:10.1088/2053-1583/4/1/011008
- 发表时间:2017-03-01
- 期刊:
- 影响因子:5.5
- 作者:Alexander-Webber, Jack A.;Sagade, Abhay A.;Hofmann, Stephan
- 通讯作者:Hofmann, Stephan
Terahertz Polarisation Modulator by Electronic Control of Graphene Loaded Chiral Metamaterial Device
通过电子控制石墨烯负载手性超材料器件的太赫兹偏振调制器
- DOI:10.1109/cleoe-eqec.2019.8872205
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Almond N
- 通讯作者:Almond N
Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene.
超薄氧化物在石墨烯上的原子层沉积的参数空间。
- DOI:10.1021/acsami.6b09596
- 发表时间:2016-11-09
- 期刊:
- 影响因子:9.5
- 作者:Aria AI;Nakanishi K;Xiao L;Braeuninger-Weimer P;Sagade AA;Alexander-Webber JA;Hofmann S
- 通讯作者:Hofmann S
Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure.
- DOI:10.1021/acs.jpcc.5b10492
- 发表时间:2016-02-04
- 期刊:
- 影响因子:0
- 作者:Aria AI;Kidambi PR;Weatherup RS;Xiao L;Williams JA;Hofmann S
- 通讯作者:Hofmann S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Hofmann其他文献
University of Birmingham Bio-inspired hierarchical polymer fiber-carbon nanotube adhesives
伯明翰大学仿生分层聚合物纤维-碳纳米管粘合剂
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Zhuxia Rong;Yanmin Zhou;Bingan Chen;John Robertson;Walter Federle;Stephan Hofmann;Ullrich Steiner;P. Goldberg‐Oppenheimer;Dr. S Robertson;Hofmann - 通讯作者:
Hofmann
Stephan Hofmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Hofmann', 18)}}的其他基金
Self-limiting Growth Mechanisms for Stable Monolayer Films of Non-van-der-Waals Oxides
非范德华氧化物稳定单层薄膜的自限生长机制
- 批准号:
EP/V047515/1 - 财政年份:2021
- 资助金额:
$ 291.91万 - 项目类别:
Research Grant
Expanding the Environmental Frontiers of Operando Metrology for Advanced Device Materials Development
扩大先进设备材料开发操作计量的环境前沿
- 批准号:
EP/T001038/1 - 财政年份:2020
- 资助金额:
$ 291.91万 - 项目类别:
Research Grant
Integration of Novel Materials in Spintronic Devices
自旋电子器件中新型材料的集成
- 批准号:
EP/P005152/1 - 财政年份:2016
- 资助金额:
$ 291.91万 - 项目类别:
Research Grant
Graphene Sensors for Food Allergen Detection
用于食品过敏原检测的石墨烯传感器
- 批准号:
EP/P51021X/1 - 财政年份:2016
- 资助金额:
$ 291.91万 - 项目类别:
Research Grant
GRAVIA - Contiguous graphene ultra-barrier films for flexible electronic applications
GRAVIA - 用于柔性电子应用的连续石墨烯超阻隔薄膜
- 批准号:
EP/M507751/1 - 财政年份:2015
- 资助金额:
$ 291.91万 - 项目类别:
Research Grant
Materials World Network: Novel Catalyst Systems for Carbon Nanotube (CNT) Synthesis and their Underlying Mechanisms
材料世界网络:用于碳纳米管(CNT)合成的新型催化剂系统及其基本机制
- 批准号:
EP/H047565/1 - 财政年份:2010
- 资助金额:
$ 291.91万 - 项目类别:
Research Grant
相似海外基金
Evaluating the impact of spreading depolarisations, post stroke, in the awake brain using graphene-enabled nanotechnology.
使用石墨烯纳米技术评估中风后清醒大脑中扩散去极化的影响。
- 批准号:
MR/Y014545/1 - 财政年份:2024
- 资助金额:
$ 291.91万 - 项目类别:
Research Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
- 批准号:
2238415 - 财政年份:2023
- 资助金额:
$ 291.91万 - 项目类别:
Continuing Grant
Scalable Graphene Enabled Smart Composites
可扩展石墨烯智能复合材料
- 批准号:
LP200301659 - 财政年份:2022
- 资助金额:
$ 291.91万 - 项目类别:
Linkage Projects
Cryogenic neuromorphic photonics enabled by graphene modulators
石墨烯调制器实现低温神经形态光子学
- 批准号:
566078-2021 - 财政年份:2021
- 资助金额:
$ 291.91万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Graphene-enabled thermal radiators for small satellites
用于小型卫星的石墨烯热散热器
- 批准号:
10009802 - 财政年份:2021
- 资助金额:
$ 291.91万 - 项目类别:
Feasibility Studies
EAGER: Exfoliated and Oriented Graphene Channel-Enabled Multifunctional Nanocomposite Fibers
EAGER:剥离和定向石墨烯通道启用的多功能纳米复合纤维
- 批准号:
1902172 - 财政年份:2019
- 资助金额:
$ 291.91万 - 项目类别:
Standard Grant
Collaborative Research: Photon-Enabled Atomic Drilling of Graphene for Supercapacitors
合作研究:用于超级电容器的石墨烯光子原子钻孔
- 批准号:
1826392 - 财政年份:2018
- 资助金额:
$ 291.91万 - 项目类别:
Standard Grant
Energy Harvesting from Salt in Seawater: A New Source of Graphene-enabled Power
从海水中的盐中收集能量:石墨烯能源的新来源
- 批准号:
104502 - 财政年份:2018
- 资助金额:
$ 291.91万 - 项目类别:
Feasibility Studies
Novel structured electrodes for graphene-enabled advanced battery applications.
用于石墨烯先进电池应用的新型结构电极。
- 批准号:
2299524 - 财政年份:2018
- 资助金额:
$ 291.91万 - 项目类别:
Studentship
Collaborative Research: Photon-Enabled Atomic Drilling of Graphene for Supercapacitors
合作研究:用于超级电容器的石墨烯光子原子钻孔
- 批准号:
1825576 - 财政年份:2018
- 资助金额:
$ 291.91万 - 项目类别:
Standard Grant