Expanding the Environmental Frontiers of Operando Metrology for Advanced Device Materials Development
扩大先进设备材料开发操作计量的环境前沿
基本信息
- 批准号:EP/T001038/1
- 负责人:
- 金额:$ 130.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lord Kelvin famously stated "when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind". This holds none more true than for nanotechnology today. Emergent materials such as 2D transition metal dichalcogenide (TMD) compounds offer exciting, wide opportunities from novel (opto-) electronic devices to energy storage and catalytic energy conversion. For the latter, TMDs materials like MoS2 have shown high catalytic activity and offer large potential as earth abundant electro-catalysts to for instance convert waste CO2 into industrially relevant chemicals/fuels and to generate hydrogen sustainably, i.e. processes of utmost significance as strategies for a sustainable, clean future economy. However, TMD catalysts can undergo significant chemical and structural changes during reactions, and the mechanisms that give the high catalytic activity remain largely unknown. Our knowledge is currently equally meagre in terms of materials synthesis. There is very little understanding how TMDs actually grow and hence how the structure and properties of these materials can be scalably controlled. These challenges and lack of understanding are common to numerous emerging materials. One key reason for this is that they typically can only be resolved and adequately characterised at a "post-mortem" stage, and we are left to speculate what mechanisms actually govern growth or material functionality at industrially relevant "real-world" conditions.This proposal aims at true operando characterisation of novel materials like TMDs under industrially relevant reactive atmospheres at elevated temperatures, to have a transformative impact on their future use by developing a fundamental understanding of their design and functionality. Our focus will be on electron microscopy and spectroscopy, in particular scanning electron microscopy and X-ray photoelectron spectroscopy, which are among the most wide-spread and versatile characterisation techniques in modern science, used across all disciplines in academia and industry. They are endowed with high (near-)surface sensitivity, making them powerful tools for analysing the structure and chemistry of surfaces and interfaces. However, low-energy electrons are also strongly scattered by gas molecules, and therefore all these techniques are conventionally performed under high vacuum or restricted environmental conditions. We propose new environmental cell approaches that can be flexibly implemented for the many electron-based techniques to overcome these restrictions, and enable direct characterisation at high spatial and/or chemical resolution across an unprecedented range of industrially relevant process conditions for temperatures as high as 1000C and in reactive gaseous or liquid environments. The proposal builds on recent strategic equipment investment at Manchester, Cambridge and the Diamond Light Source/Harwell, and together with market-leading industrial partners our vision is to pioneer versatile approaches that open up new correlative, multi-modal operando probing capability applicable to a wide range of fields including organic semiconductors, battery/energy research, catalysis and life sciences. This will also link to simulation and theory to achieve new levels of understanding and predictive power. Applied to TMD materials, this capability will allow us to directly interrogate TMD nucleation and growth at industrially relevant reactor conditions, to develop new manufacturing processes including for so far largely unexplored metallic compounds. This will further allow us for the first time to systematically study model TMD catalysts under reaction conditions. In particular, we propose to explore metallic TMDs like NbS2, as unlike to semiconducting MoS2, their catalytic activity could extend over the entire basal plane, opening new directions to design novel electro-catalysts with low overpotential and high current densities.
开尔文勋爵曾说过一句名言:“当你无法衡量它,当你无法用数字表达它时,你的知识是贫乏和不令人满意的。对于今天的纳米技术来说,这一点再正确不过了。新兴材料,如2D过渡金属二硫属化物(TMD)化合物提供了令人兴奋的,广泛的机会,从新型(光)电子器件到能量存储和催化能量转换。对于后者,像MoS 2这样的TMD材料已经显示出高催化活性,并作为地球丰富的电催化剂提供了巨大的潜力,例如将废CO2转化为工业相关的化学品/燃料,并可持续地产生氢气,即作为可持续的清洁未来经济战略的最重要的过程。然而,TMD催化剂在反应过程中会发生显着的化学和结构变化,并且提供高催化活性的机制在很大程度上仍然未知。我们的知识目前在材料合成方面同样贫乏。人们对TMD实际上是如何生长的,以及如何可扩展地控制这些材料的结构和性能知之甚少。这些挑战和缺乏理解是许多新兴材料的共同点。其中一个关键原因是,它们通常只能在“事后”阶段被解决和充分表征,并且我们只能推测在工业相关的“真实世界”条件下实际上控制生长或材料功能的机制。该提案旨在在工业相关的反应气氛下在高温下对新型材料如TMD进行真正的操作表征,通过发展对其设计和功能的基本理解,对未来的使用产生变革性影响。我们的重点将是电子显微镜和光谱学,特别是扫描电子显微镜和X射线光电子能谱,这是现代科学中最广泛和最通用的表征技术之一,用于学术界和工业界的所有学科。它们具有高(近)表面灵敏度,使其成为分析表面和界面结构和化学的强大工具。然而,低能电子也被气体分子强烈散射,因此所有这些技术通常在高真空或受限的环境条件下进行。我们提出了新的环境电池方法,可以灵活地实现许多基于电子的技术,以克服这些限制,并使直接表征在高空间和/或化学分辨率在前所未有的范围内的工业相关的工艺条件的温度高达1000 ℃和反应气体或液体环境。该提案建立在最近在曼彻斯特,剑桥和钻石光源/哈威尔的战略设备投资的基础上,并与市场领先的工业合作伙伴一起,我们的愿景是开创多功能方法,开辟新的相关,多模态操作探测能力,适用于广泛的领域,包括有机半导体,电池/能源研究,催化和生命科学。这也将与模拟和理论联系起来,以实现新的理解和预测能力。应用于TMD材料,这种能力将使我们能够在工业相关的反应器条件下直接询问TMD成核和生长,以开发新的制造工艺,包括迄今为止尚未开发的金属化合物。这将进一步使我们第一次系统地研究模型TMD催化剂的反应条件。特别是,我们建议探索金属TMD,如NbS 2,与半导体MoS 2不同,它们的催化活性可以延伸到整个基面,为设计具有低过电位和高电流密度的新型电催化剂开辟了新的方向。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Empirical Parameter to Compare Molecule-Electrode Interfaces in Large-Area Molecular Junctions.
- DOI:10.1021/acsphyschemau.1c00029
- 发表时间:2022-05-25
- 期刊:
- 影响因子:0
- 作者:Carlotti, Marco;Soni, Saurabh;Kovalchuk, Andrii;Kumar, Sumit;Hofmann, Stephan;Chiechi, Ryan C
- 通讯作者:Chiechi, Ryan C
Crystal Orientation Dependent Oxidation Modes at the Buried Graphene-Cu Interface.
- DOI:10.1021/acs.chemmater.0c02296
- 发表时间:2020-09-22
- 期刊:
- 影响因子:0
- 作者:Braeuninger-Weimer P;Burton OJ;Zeller P;Amati M;Gregoratti L;Weatherup RS;Hofmann S
- 通讯作者:Hofmann S
Electron beam evaporation of superconductor-ferromagnet heterostructures.
- DOI:10.1038/s41598-022-11828-y
- 发表时间:2022-05-11
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Putting High-Index Cu on the Map for High-Yield, Dry-Transferred CVD Graphene.
将高索引Cu放在地图上,以进行高收益,干燥的CVD石墨烯。
- DOI:10.1021/acsnano.2c09253
- 发表时间:2023-01-03
- 期刊:
- 影响因子:17.1
- 作者:Burton, Oliver J.;Winter, Zachary;Watanabe, Kenji;Taniguchi, Takashi;Beschoten, Bernd;Stampfer, Christoph;Hofmann, Stephan
- 通讯作者:Hofmann, Stephan
Putting high-index Cu on the map for high-yield, dry-transferred CVD graphene
将高指数 Cu 应用于高产干转移 CVD 石墨烯
- DOI:10.48550/arxiv.2209.08007
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Burton O
- 通讯作者:Burton O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Hofmann其他文献
University of Birmingham Bio-inspired hierarchical polymer fiber-carbon nanotube adhesives
伯明翰大学仿生分层聚合物纤维-碳纳米管粘合剂
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Zhuxia Rong;Yanmin Zhou;Bingan Chen;John Robertson;Walter Federle;Stephan Hofmann;Ullrich Steiner;P. Goldberg‐Oppenheimer;Dr. S Robertson;Hofmann - 通讯作者:
Hofmann
Stephan Hofmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Hofmann', 18)}}的其他基金
Self-limiting Growth Mechanisms for Stable Monolayer Films of Non-van-der-Waals Oxides
非范德华氧化物稳定单层薄膜的自限生长机制
- 批准号:
EP/V047515/1 - 财政年份:2021
- 资助金额:
$ 130.81万 - 项目类别:
Research Grant
Integration of Novel Materials in Spintronic Devices
自旋电子器件中新型材料的集成
- 批准号:
EP/P005152/1 - 财政年份:2016
- 资助金额:
$ 130.81万 - 项目类别:
Research Grant
Graphene Sensors for Food Allergen Detection
用于食品过敏原检测的石墨烯传感器
- 批准号:
EP/P51021X/1 - 财政年份:2016
- 资助金额:
$ 130.81万 - 项目类别:
Research Grant
GRAVIA - Contiguous graphene ultra-barrier films for flexible electronic applications
GRAVIA - 用于柔性电子应用的连续石墨烯超阻隔薄膜
- 批准号:
EP/M507751/1 - 财政年份:2015
- 资助金额:
$ 130.81万 - 项目类别:
Research Grant
CVD enabled Graphene Technology and Devices (GRAPHTED)
支持 CVD 的石墨烯技术和器件 (GRAPHTED)
- 批准号:
EP/K016636/1 - 财政年份:2013
- 资助金额:
$ 130.81万 - 项目类别:
Research Grant
Materials World Network: Novel Catalyst Systems for Carbon Nanotube (CNT) Synthesis and their Underlying Mechanisms
材料世界网络:用于碳纳米管(CNT)合成的新型催化剂系统及其基本机制
- 批准号:
EP/H047565/1 - 财政年份:2010
- 资助金额:
$ 130.81万 - 项目类别:
Research Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 130.81万 - 项目类别:
Studentship
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Continuing Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
- 批准号:
2409327 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Standard Grant
RII Track-1: Interface of Change: Building Collaborations to Assess Harvested and Farmed Marine Species Prioritized by Gulf of Alaska Communities Facing Environmental Shifts
RII Track-1:变革界面:建立合作来评估面临环境变化的阿拉斯加湾社区优先考虑的捕捞和养殖海洋物种
- 批准号:
2344553 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Cooperative Agreement
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Continuing Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
- 批准号:
2305609 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Fellowship Award
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Cooperative Agreement
EA: Acquisition of analytical equipment for environmental biogeochemistry and mineralogy
EA:购置环境生物地球化学和矿物学分析设备
- 批准号:
2323242 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Standard Grant
Exploration of relationship between floods, poverty, and dynamic environmental sustainability
探索洪水、贫困和动态环境可持续性之间的关系
- 批准号:
24K07692 - 财政年份:2024
- 资助金额:
$ 130.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)