Fs-VUV Generation: Mapping the Reaction Co-ordinate in Photochemical Dynamics
Fs-VUV 生成:绘制光化学动力学中的反应坐标
基本信息
- 批准号:EP/K021052/1
- 负责人:
- 金额:$ 57.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Developing a detailed understanding of how molecules interact with light is of great importance. For example, it is particularly relevant to fundamental processes that take place in biology, such as vision and photosynthesis, as well as in so-called "self-protection" mechanisms that occur in both DNA and the melanin pigmentation system, serving to protect the body from the potentially damaging effects of ultraviolet (UV) light. Additionally, an understanding of light-molecule interactions is of critical relevance for many other classes of molecules, including photostabilizers, photochromic polymers, molecular switches, light harvesting complexes and drugs for the targeted delivery of active agents (photodynamic therapy). Developing refined experimental techniques to enhance the study of such systems is therefore an important challenge.The use of "ultrafast" femtosecond (fs) laser pulses with temporal durations comparable to the timescales of molecular motion (1 fs = 10^-15 s) is a powerful method for studying light-matter interactions. Energy redistribution within a molecule following the absorption of light may be followed in real time using "pump-probe" techniques: the pump initiates the energy redistribution process (effectively starting a dynamical "clock") and the system may then be interrogated at a series of precisely controlled delay times by the probe - mapping out the pathways for energy flow. However, a key limitation with this approach is that, in many instances, the full "view" along these pathways is restricted, obscuring critical information. Addressing this issue forms one of the main goals of this work. The proposed research programme brings together a team of investigators with a unique set of complementary skills and experience in ultrafast lasers, non-linear optics, molecular spectroscopy and dynamics, ultra-high vacuum science and cutting edge computational methods. In the initial phase, we will develop an economic and compact light source that will produce femtosecond light pulses across the vacuum-ultraviolet (VUV) region of the electromagnetic spectrum. This will expand on recently developed experimental methods. The source output (which we refer to as fs-VUV) is well suited for use as the probe step in pump-probe experiments as it provides a highly expanded view of the pathways that facilitate excess energy redistribution in many molecules (when compared to using non-VUV probes). This will yield previously unobtainable levels of insight into the nature of light-molecule interactions.Following the successful development and characterization of the fs-VUV source, it will then be used to upgrade an existing experiment at Heriot-Watt University that uses pump-probe photoelectron imaging as a technique to study the dynamics of energy redistribution. In the next phase of the project we will use the fs-VUV probe to investigate energy redistribution in urocanic acid. This is one of the primary UV absorbers present in the skin (possibly acting as a natural "sunscreen") and our experimental results, in conjunction with supporting theoretical work, will yield important new mechanistic information relating to this important biomolecular system.In the final phase of the project, we will use the fs-VUV as a probe in photoelectron imaging experiments that investigate energy redistribution and molecular fragmentation in nitrobenzene and some of its selected derivatives. These are important test systems for the development of improved drugs for photodynamic therapy. In particular, we will investigate the product channel leading to light-induced release of nitric oxide (NO), which is important for the regulation and maintenance of many physiologically vital functions. Our work will begin to develop improved understanding of the general mechanistic principles that enhance the NO production channel and should be readily scalable to larger, practically applicable systems.
发展对分子如何与光相互作用的详细了解非常重要。例如,它与生物学中发生的基本过程特别相关,如视觉和光合作用,以及发生在DNA和黑色素着色系统中的所谓“自我保护”机制,用于保护身体免受紫外线(UV)的潜在破坏性影响。此外,对光-分子相互作用的了解对许多其他类型的分子至关重要,包括光稳定剂、光致变色聚合物、分子开关、光捕获复合体和用于靶向输送活性物质的药物(光动力疗法)。因此,发展精细的实验技术来加强对这类系统的研究是一个重要的挑战。使用与分子运动的时间尺度相当的超快飞秒(FS)激光脉冲(1fs=10^-15 S)是研究光-物质相互作用的有力方法。在吸收光之后,分子内的能量再分配可以使用“泵浦-探测”技术进行实时跟踪:泵浦启动能量再分配过程(有效地启动动态“时钟”),然后通过探头绘制出能量流动的路径,在一系列精确控制的延迟时间对系统进行询问。然而,这种方法的一个关键限制是,在许多情况下,这些路径上的完整“视图”是受限的,模糊了关键信息。解决这一问题是这项工作的主要目标之一。拟议的研究计划汇集了一组研究人员,他们在超快激光、非线性光学、分子光谱学和动力学、超高真空科学和尖端计算方法方面拥有一套独特的互补技能和经验。在初始阶段,我们将开发一种经济紧凑的光源,它将在电磁光谱的真空-紫外线(VUV)区域产生飞秒光脉冲。这将在最近开发的实验方法上进行扩展。源输出(我们称为fs-VUV)非常适合用作泵浦-探测实验中的探测步骤,因为它提供了促进许多分子中多余能量重新分配的路径的高度扩展的视图(与使用非VUV探测器相比)。这将产生以前无法获得的对光-分子相互作用本质的洞察水平。在FS-VUV源的成功开发和表征之后,它将被用于升级赫里奥特-瓦特大学现有的一项实验,该实验使用泵浦探测光电子成像作为一种技术来研究能量再分配的动力学。在该项目的下一阶段,我们将使用FS-VUV探测器来研究尿毒酸中的能量再分配。这是存在于皮肤中的主要紫外线吸收剂之一(可能起到天然防晒剂的作用),我们的实验结果与支持的理论工作将产生与这一重要生物分子系统相关的重要新机制信息。在项目的最后阶段,我们将在光电子成像实验中使用fs-VUV作为探测器,研究硝基苯及其一些选定的衍生物中的能量再分配和分子碎片。这些都是开发光动力疗法改进药物的重要测试系统。特别是,我们将研究导致光诱导释放一氧化氮(NO)的产物通道,这对于调节和维持许多生理重要功能是重要的。我们的工作将开始提高对增强NO生产渠道的一般机械原理的理解,并应易于扩展到更大的、实际适用的系统。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Caveats in the interpretation of time-resolved photoionization measurements: A photoelectron imaging study of pyrrole.
- DOI:10.1063/1.4972096
- 发表时间:2016-12
- 期刊:
- 影响因子:0
- 作者:Stuart W Crane;Magdalena M Zawadzki;James O. F. Thompson;N. Kotsina;O. Ghafur;D. Townsend
- 通讯作者:Stuart W Crane;Magdalena M Zawadzki;James O. F. Thompson;N. Kotsina;O. Ghafur;D. Townsend
Short-wavelength probes in time-resolved photoelectron spectroscopy: an extended view of the excited state dynamics in acetylacetone
- DOI:10.1039/d0cp00068j
- 发表时间:2020-02-28
- 期刊:
- 影响因子:3.3
- 作者:Kotsina, Nikoleta;Candelaresi, Marco;Townsend, Dave
- 通讯作者:Townsend, Dave
Mapping extended reaction coordinates in photochemical dynamics
绘制光化学动力学中的扩展反应坐标
- DOI:10.1016/j.jms.2023.111807
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Townsend D
- 通讯作者:Townsend D
Improved insights in time-resolved photoelectron imaging
- DOI:10.1039/d1cp00933h
- 发表时间:2021-04-28
- 期刊:
- 影响因子:3.3
- 作者:Kotsina, Nikoleta;Townsend, Dave
- 通讯作者:Townsend, Dave
Vacuum ultraviolet excited state dynamics of small amides.
小酰胺的真空紫外激发态动力学。
- DOI:10.1063/1.5079721
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Larsen MAB
- 通讯作者:Larsen MAB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dave Townsend其他文献
Fourier-Hankel-Abel Nyquist-limited tomography: A spherical harmonic basis function approach to tomographic velocity-map image reconstruction.
Fourier-Hankel-Abel Nyquist-limited tomography:一种用于层析速度图图像重建的球谐基函数方法。
- DOI:
10.1063/5.0206415 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
C. Sparling;D. Rajak;Valérie Blanchet;Y. Mairesse;Dave Townsend - 通讯作者:
Dave Townsend
Excited state dynamics of azanaphthalenes reveal opportunities for the rational design of photoactive molecules
氮杂萘的激发态动力学揭示了光活性分子合理设计的机会
- DOI:
10.1038/s42004-024-01403-z - 发表时间:
2025-01-09 - 期刊:
- 影响因子:6.200
- 作者:
Malcolm Garrow;Lauren Bertram;Abi Winter;Andrew W. Prentice;Stuart W. Crane;Paul D. Lane;Stuart J. Greaves;Martin J. Paterson;Adam Kirrander;Dave Townsend - 通讯作者:
Dave Townsend
Dave Townsend的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dave Townsend', 18)}}的其他基金
Novel Non-linear Optical-Fibre Sources for Time-resolved Molecular Dynamics: Towards the Next Generation of Ultrafast Spectroscopy
用于时间分辨分子动力学的新型非线性光纤源:迈向下一代超快光谱学
- 批准号:
EP/R030448/1 - 财政年份:2018
- 资助金额:
$ 57.76万 - 项目类别:
Research Grant
The Role of Substituent Functionality in the Photophysics of Model Biological Systems
取代基官能团在模型生物系统光物理学中的作用
- 批准号:
EP/G041717/1 - 财政年份:2009
- 资助金额:
$ 57.76万 - 项目类别:
Research Grant
相似国自然基金
再生水氯-VUV/UV消毒对反渗透膜生物污堵的控制及影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复合VUV光电离-化学电离源及其在C1催化反应在线质谱分析中的应用
- 批准号:22174142
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
石化废水典型含氮有机物的VUV-高级氧化/还原降解机制及工艺优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
(Gd,La)2Si2O7:Ce3+闪烁体的结构相变、格位占据和VUV/XEL光谱研究
- 批准号:52002086
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于多种自由基协同氧化的VUV/UV/过硫酸盐体系降解水中微污染物的机理
- 批准号:
- 批准年份:2019
- 资助金额:27 万元
- 项目类别:青年科学基金项目
基于多种自由基协同氧化的VUV/UV/过硫酸盐体系降解水中微污染物的机理
- 批准号:51908564
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
高能VUV光解/催化氧化协同降解偏二甲肼废气研究
- 批准号:21875281
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
VUV/UV/(OCl-)高效氧化吸收船舶废气SOx与NOx的机理研究
- 批准号:51809100
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于晶体场和电-声作用设计的Ce3+/Eu2+掺杂的新体系潜在闪烁材料的合成和VUV/XEL光谱研究
- 批准号:U1632101
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:联合基金项目
基于EAST切向VUV高速成像诊断系统的ELM二维动力学研究
- 批准号:11605244
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
チタン結晶構造制御とVUV照射による骨結合促進可能なインプラント表面開発
通过控制钛晶体结构和真空紫外线照射,开发可促进骨整合的种植体表面
- 批准号:
23K09292 - 财政年份:2023
- 资助金额:
$ 57.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a VUV sensor test stand for nEXO
开发 nEXO VUV 传感器测试台
- 批准号:
562403-2021 - 财政年份:2021
- 资助金额:
$ 57.76万 - 项目类别:
University Undergraduate Student Research Awards
Ultrafast Laser Spectroscopy with Photons from the IR to the VUV
从 IR 到 VUV 光子的超快激光光谱
- 批准号:
EP/T019182/1 - 财政年份:2021
- 资助金额:
$ 57.76万 - 项目类别:
Research Grant
ナノ力学計測に基づくVUV光活性化高分子接合の原理解明
基于纳米力学测量阐明 VUV 光活化聚合物键合原理
- 批准号:
21H01635 - 财政年份:2021
- 资助金额:
$ 57.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-power ultrashort pulse laser system for simultaneous generation of ultrashort THz-pump and VUV-probe pulses
高功率超短脉冲激光系统,用于同时生成超短太赫兹泵浦和 VUV 探测脉冲
- 批准号:
445487514 - 财政年份:2020
- 资助金额:
$ 57.76万 - 项目类别:
Major Research Instrumentation
VUV light source for high-resolution (energy/momentum/spatial) photoemission
用于高分辨率(能量/动量/空间)光电发射的 VUV 光源
- 批准号:
445238239 - 财政年份:2020
- 资助金额:
$ 57.76万 - 项目类别:
Major Research Instrumentation
Development of High Performance Thin Film Encapsulation by VUV Photochemical Gel Conversion
通过 VUV 光化学凝胶转化开发高性能薄膜封装
- 批准号:
20K05317 - 财政年份:2020
- 资助金额:
$ 57.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an electroluminescent VUV light source
电致发光VUV光源的开发
- 批准号:
526537-2018 - 财政年份:2018
- 资助金额:
$ 57.76万 - 项目类别:
University Undergraduate Student Research Awards
Investigation of in situ VUV absorption spectroscopy for quantitative analysis of plasma activated water
原位真空紫外吸收光谱定量分析等离子体活化水的研究
- 批准号:
17K05099 - 财政年份:2017
- 资助金额:
$ 57.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantification of VUV photon and particle fluxes in low pressure plasmas for surface treatment
用于表面处理的低压等离子体中的 VUV 光子和粒子通量的量化
- 批准号:
326321085 - 财政年份:2017
- 资助金额:
$ 57.76万 - 项目类别:
Research Grants