Varieties of modules and representations of Frobenius kernels of reductive groups
还原群 Frobenius 核的各种模和表示
基本信息
- 批准号:EP/K022997/1
- 负责人:
- 金额:$ 12.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An algebra A is a type of mathematical object with a structure satisfying certain properties; a representation for A is a space on which A acts in a way which is compatible with its structure. Varieties of modules arise when we consider the set of *all* possible representations (of a given dimension) for A. Beginning with elementary examples, one obtains surprisingly rich and complex geometric structures parametrizing the n-dimensional modules.One natural question to ask is the following: given an algebra A, can we identify the irreducible components of the variety of n-dimensional A-modules? In general, this turns out to be a hard question. The existing methods for tackling it mostly depend on fairly restrictive properties of the algebra A. In the research proposed here, we will investigate varieties of modules for a particular class of algebras: group algebras of elementary abelian p-groups of rank 2. The problem of describing these varieties of modules has an alternative interpretation in relation to cohomology of the second Frobenius kernel of the group of invertible n x n matrices, due to work of Suslin, Friedlander and Bendel. In order to tackle this specific problem, we will have to develop some new methods for studying varieties of modules, adapting earlier results of Crawley-Boevey and Schroer.
代数A是一类数学对象,其结构满足某些性质; A的表示是一个空间,A以与其结构相容的方式作用于该空间。当我们考虑A的(给定维数的)* 所有 * 可能表示的集合时,出现了各种各样的模。从基本的例子开始,我们可以得到参数化n维模的丰富而复杂的几何结构。一个自然的问题是:给定一个代数A,我们能确定n维A-模簇的不可约分支吗?总的来说,这是一个很难回答的问题。现有的解决方法主要依赖于代数A的相当严格的性质。在这里提出的研究中,我们将研究一类特殊代数的模的变种:秩为2的初等交换p-群的群代数。问题描述这些品种的模块有一个替代的解释关系到上同调的第二弗罗贝纽斯内核组的可逆n × n矩阵,由于工作的Suslin,Friedlander和本德尔。为了解决这个具体问题,我们将不得不发展一些新的方法来研究各种各样的模,适应克劳利-博维和施罗德的早期结果。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generic singularities of nilpotent orbit closures
幂零轨道闭合的一般奇点
- DOI:10.1016/j.aim.2016.09.010
- 发表时间:2015-02
- 期刊:
- 影响因子:1.7
- 作者:付保华;Daniel Juteau;Paul Levy;Eric Sommers
- 通讯作者:Eric Sommers
On nilpotent commuting varieties and cohomology of Frobenius kernels
关于 Frobenius 核的幂零交换簇和上同调
- DOI:10.1016/j.jalgebra.2014.11.014
- 发表时间:2015
- 期刊:
- 影响因子:0.9
- 作者:Ngo N
- 通讯作者:Ngo N
On varieties of commuting nilpotent matrices
- DOI:10.1016/j.laa.2014.03.032
- 发表时间:2013-08
- 期刊:
- 影响因子:1.1
- 作者:N. Ngo;Klemen vSivic
- 通讯作者:N. Ngo;Klemen vSivic
Commuting varieties and cohomological complexity theory
- DOI:10.1112/jlms.12650
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Paul D. Levy;N. Ngo;Klemen Šivic
- 通讯作者:Paul D. Levy;N. Ngo;Klemen Šivic
Mixed nilpotent commuting varieties of Lie algebras of exceptional type
特殊类型李代数的混合幂零交换簇
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Levy, P.D.
- 通讯作者:Levy, P.D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Levy其他文献
Supracondylar humerus fractures in low- and lower middle-income countries: a scoping review of the current epidemiology, treatment modalities, and outcomes
- DOI:
10.1007/s00264-020-04694-8 - 发表时间:
2020-07-21 - 期刊:
- 影响因子:2.600
- 作者:
Sravya Challa;Kiran J. Agarwal-Harding;Paul Levy;Jill Barr-Walker;Coleen S. Sabatini - 通讯作者:
Coleen S. Sabatini
UNDERWATER PAPILLECTOMY: TWELVE-YEAR CLINICAL EXPERIENCE
水下乳头切除术:12年临床经验
- DOI:
10.1016/j.gie.2025.03.679 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:7.500
- 作者:
Paul Levy;Yongyan Cui;Andrew Nett;Nazia Hasan;Chris M. Hamerski;Jona C. Bernabe;Katrina Maddox;Julie Lee;Kenneth F. Binmoeller - 通讯作者:
Kenneth F. Binmoeller
SAT265 - Derivation of a cardiac risk index for use in liver transplantation for non-alcoholic steatohepatitis
SAT265 - 用于非酒精性脂肪性肝炎肝移植的心脏风险指数的推导
- DOI:
10.1016/s0168-8278(22)01887-6 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:33.000
- 作者:
Paul Levy;Claire Harrington;Elizabeth Cabrera;Jing Gao;Dyanna Gregory;Cynthia Padilla;Gonzalo Crespo;Lisa VanWagner - 通讯作者:
Lisa VanWagner
Tu2021 IMPACT OF ARTIFICIAL INTELLIGENCE ON ADENOMA DETECTION RATE OF GASTROENTEROLOGISTS AT A TERTIARY CARE ENDOSCOPY SUITE: A QUALITY IMPROVEMENT STUDY AND STATISTICAL ANALYSIS
- DOI:
10.1016/s0016-5085(24)03878-2 - 发表时间:
2024-05-18 - 期刊:
- 影响因子:
- 作者:
Vishwajit Kode;Torrey Czech;Paul Levy;Frances Lee;Timothy Chen - 通讯作者:
Timothy Chen
The Black Seventh-Day Adventist exploratory health study.
黑人基督复临安息日会探索性健康研究。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:3.2
- 作者:
D. Nyenhuis;P. Gorelick;C. Easley;D. Garron;Y. Harris;D. Richardson;R. Raman;Paul Levy - 通讯作者:
Paul Levy
Paul Levy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Levy', 18)}}的其他基金
Recursion, guarded recursion and computational effects
递归、保护递归和计算效果
- 批准号:
EP/N023757/1 - 财政年份:2016
- 资助金额:
$ 12.21万 - 项目类别:
Research Grant
Semantics of Nondeterminism: Functions, Strategies and Bisimulation
非决定论的语义:函数、策略和互模拟
- 批准号:
EP/E056091/1 - 财政年份:2008
- 资助金额:
$ 12.21万 - 项目类别:
Fellowship
Planning a Philadephia Neighborhood Scientific Education AndResearch Consortium
规划费城邻里科学教育与研究联盟
- 批准号:
7917792 - 财政年份:1979
- 资助金额:
$ 12.21万 - 项目类别:
Standard Grant
Travel to Attend: International Symposium on Nuclear Techniques in Exploration, Extraction & Processing of Mineral Resources, Vienna, Austria, 03/07-11/77
前往参加:勘探、开采核技术国际研讨会
- 批准号:
7707294 - 财政年份:1977
- 资助金额:
$ 12.21万 - 项目类别:
Standard Grant
相似海外基金
Reseach on modular representations and standard modules of association schemes
关联方案的模块化表示及标准模块研究
- 批准号:
17K05165 - 财政年份:2017
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unitary Representations and Generalized Harish-Chandra Modules
酉表示和广义 Harish-Chandra 模
- 批准号:
341504-2013 - 财政年份:2015
- 资助金额:
$ 12.21万 - 项目类别:
Discovery Grants Program - Individual
Modular representations of algebraic groups
代数群的模表示
- 批准号:
15K04789 - 财政年份:2015
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constructions of analytic models of small representaions
小表示分析模型的构建
- 批准号:
26800052 - 财政年份:2014
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Unitary Representations and Generalized Harish-Chandra Modules
酉表示和广义 Harish-Chandra 模
- 批准号:
341504-2013 - 财政年份:2014
- 资助金额:
$ 12.21万 - 项目类别:
Discovery Grants Program - Individual
Unitary Representations and Generalized Harish-Chandra Modules
酉表示和广义 Harish-Chandra 模
- 批准号:
341504-2013 - 财政年份:2013
- 资助金额:
$ 12.21万 - 项目类别:
Discovery Grants Program - Individual
Modular representations of algebraic groups
代数群的模表示
- 批准号:
23540023 - 财政年份:2011
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shimura varieties, Galois modules and Galois representations
Shimura 簇、伽罗瓦模和伽罗瓦表示
- 批准号:
1102208 - 财政年份:2011
- 资助金额:
$ 12.21万 - 项目类别:
Continuing Grant
Research on the structure of Iwasawa modules for p-adic representations
p进数表示的Iwasawa模结构研究
- 批准号:
21540018 - 财政年份:2009
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of the representation theoretical aspect of generalized flag varieties
广义旗品种代表性理论研究
- 批准号:
18540162 - 财政年份:2006
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)