EXPERIMENTAL STUDY ON A THEORY FOR VOLUNTARY MOVEMENT
随意运动理论的实验研究
基本信息
- 批准号:2266812
- 负责人:
- 金额:$ 12.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-05-01 至 1995-03-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The voluntary control of movement is perhaps the most important of
human skills since neither actions, nor ideas nor emotions can be expressed
in its absence. Clinically significant deficits of motor control are all
too common results of trauma and disease and are the source of enormous
individual suffering and public as well as private expense.
Our understanding of how neural mechanisms control human movements is
founded in decades (or even centuries) of observation of behavior in both
normal and impaired subjects. This can be thought of as an extensive but
patchy record of what humans do in the course of performing motor tasks.
What we are aiming for here is to better define the envelope of behaviors
defined by what humans can do (rather than the subset of what they do by
experimentally investigating the kinds of uniformities of behavior that are
maintained across modifications of motor tasks. From observations of such
uniformities or invariances, we infer rules for control of muscle
contraction that are used by the motor system. We characterize sets of
such rules as a strategy. Strategies are qualitative changes in the way
muscle forces are developed in response to circumstances surrounding the
performance of motor tasks to generate different kinds of movements.
For example, we have identified two strategies for single-joint elbow
movements called "speed insensitive" and "speed sensitive" which
distinguish two patterns of behavior in response to changes in movement
distance, load, accuracy and speed. Strategies predict kinetic, kinematic
and myoelectrical aspects of behavior to provide both a succinct
description as to what subjects do and prediction of what subjects should
do. The development of these ideas has led us to try to fit them into
general theories of voluntary movement. This leads to normative patterns
which the strategies predict and we will try to apply these ideas to
develop a model for studying motor learning and test an hypothesis on
spontaneous falling in the elderly.
The specific experiments to be performed in this study focus on
extending our single joint approach to progressively more natural and
unconstrained movements. Its goal is a description of behavior and a model
for control of normal, everyday movement tasks.
对运动的自愿控制可能是
人类的技能,因为无论是行动,还是思想或情感都无法表达
在它不在的情况下。临床上显著的运动控制缺陷都是
创伤和疾病的结果太常见了,是巨大的
个人的痛苦和公共和私人的开支。
我们对神经机制如何控制人类运动的理解是
建立在几十年(甚至几个世纪)对两者行为的观察中
正常和受损的受试者。这可以被认为是一个广泛的但
关于人类在执行运动任务的过程中所做的事情的零星记录。
我们在这里的目标是更好地定义行为的包络
由人类能做什么来定义(而不是他们所做的事情的子集
通过实验研究了行为的一致性
在运动任务的修改过程中保持。从观察到的这些
一致性或不变性,我们推导出肌肉控制的规则
由马达系统使用的收缩。我们刻画了一组
这样的规则作为一种战略。战略是方式上的质的变化
肌肉力量是根据周围的情况而发展起来的
执行运动任务,以产生不同类型的动作。
例如,我们已经为单关节肘部确定了两种策略
被称为“速度不敏感”和“速度敏感”的动作
区分两种对运动变化作出反应的行为模式
距离、负载、精度和速度。战略预测运动学,运动学
和肌电方面的行为提供了一种简洁的
关于受试者做什么的描述和对受试者应该做什么的预测
做。这些想法的发展使我们试图将它们适应于
自愿流动的一般理论。这导致了规范的模式
我们将尝试将这些想法应用于
开发一个研究运动学习的模型,并检验一个假设
老年人自发性跌倒。
本研究将进行的具体实验主要集中在
将我们的单一联合方法扩展到逐渐更自然和
不受约束的运动。它的目标是对行为的描述和模型
用于控制正常的日常运动任务。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Muscle compliance: implications for the control of movement.
肌肉顺应性:对运动控制的影响。
- DOI:
- 发表时间:1996
- 期刊:
- 影响因子:0
- 作者:Gottlieb,GL
- 通讯作者:Gottlieb,GL
Principles for learning single-joint movements. I. Enhanced performance by practice.
学习单关节运动的原则。
- DOI:10.1007/bf00230208
- 发表时间:1993
- 期刊:
- 影响因子:2
- 作者:Corcos,DM;Jaric,S;Agarwal,GC;Gottlieb,GL
- 通讯作者:Gottlieb,GL
Analysis of kinematic invariances of multijoint reaching movement.
多关节伸展运动的运动学不变性分析。
- DOI:10.1007/bf00199467
- 发表时间:1995
- 期刊:
- 影响因子:1.9
- 作者:Goodman,SR;Gottlieb,GL
- 通讯作者:Gottlieb,GL
Principles for learning single-joint movements. II. Generalizing a learned behavior.
学习单关节运动的原则。
- DOI:10.1007/bf00230209
- 发表时间:1993
- 期刊:
- 影响因子:2
- 作者:Jaric,S;Corcos,DM;Agarwal,GC;Gottlieb,GL
- 通讯作者:Gottlieb,GL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GERALD L GOTTLIEB其他文献
GERALD L GOTTLIEB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GERALD L GOTTLIEB', 18)}}的其他基金
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Construction of a learning support system through learning behavior prediction using student modeling
使用学生建模通过学习行为预测构建学习支持系统
- 批准号:
23K17604 - 财政年份:2023
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Service Process Measurement System based on Behavior Prediction in Nursing-care Service
基于行为预测的护理服务过程测量系统开发
- 批准号:
22K12286 - 财政年份:2022
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: IMR: MM-1C: Privacy-preserving IoT Analytics and Behavior Prediction on Network Edge
合作研究:IMR:MM-1C:网络边缘上的隐私保护物联网分析和行为预测
- 批准号:
2219866 - 财政年份:2022
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1C: Privacy-preserving IoT Analytics and Behavior Prediction on Network Edge
合作研究:IMR:MM-1C:网络边缘上的隐私保护物联网分析和行为预测
- 批准号:
2219867 - 财政年份:2022
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Object State Change Detection and Human Behavior Prediction Focused on Hand Manipulation
专注于手部操作的物体状态变化检测和人类行为预测
- 批准号:
21J11626 - 财政年份:2021
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
- 批准号:
1955365 - 财政年份:2020
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
- 批准号:
1955404 - 财政年份:2020
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Behavior Prediction of Traffic Participants based on Micro and Macro features for Urban Automated Driving
城市自动驾驶基于微观和宏观特征的交通参与者行为预测
- 批准号:
20K04397 - 财政年份:2020
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Towards Fatigue Behavior Prediction of Structural Materials through Computationally-Informed Textural and Microstructural Characteristics
职业:通过计算信息的纹理和微观结构特征预测结构材料的疲劳行为
- 批准号:
1751591 - 财政年份:2018
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Research on Behavior Prediction of Cylindrical Line Structure with Rotation in Flow
流动中旋转圆柱线结构行为预测研究
- 批准号:
18H01634 - 财政年份:2018
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




