High precision temperature measurements for reacting flows
反应流的高精度温度测量
基本信息
- 批准号:EP/K02924X/1
- 负责人:
- 金额:$ 54.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The effective and fast design of low emission gas turbines depends critically on the ability of engineers to make accurate and precise predictions of gas temperatures within the combustion chamber. This project aims to produce instantaneous temperature measurements of the highest accuracy and precision ever in model and industrial scale combustors. These precision measurements aim not only provide the basis for validation of models by industrial and academic users, but also to create a path for development of a lower cost, high precision thermometry technique for deployment in realistic combustors. The two key factors governing the design of continuous flow combustors are maintaining low emissions - particularly nitric oxides - and keeping the system away from thermoacoustic instabilities. The spatial and statistical distribution of burned gas temperatures is the single most important factor governing the formation of nitric oxide (NO): a local change of 50 K can lead to a change of 70% in thermal NO formation rates at typical combustion temperatures. Validation of emission prediction models is hemmed by the lack of availability of statistical and spatial information on temperatures. Thermoacoustic instabilities are created by a feedback effect in which acoustic waves generated by the unsteady acceleration of the flow during combustion in a confined environment lead to further unsteadiness in heat release. Two factors associated with the flame are important: the response of the flame to acoustic perturbation, and the generation of temperature non-uniformities (called entropy spots): the former leads directly to density fluctuations and acoustic waves, and the latter couple the boundary conditions to reflect as pressure waves. The identification of the origin of combustion instabilities is complex, as several factors can contribute fluctuations, yet usually only pressure information is available, sometimes aided by relative total heat release fluctuations via chemiluminescence. Nevertheless, statistical measurements of temperatures in either model or industrial scale gas turbine flames are relatively uncommon, because of difficulties with physical probes or optical methods relying on calibration of signal amplitudes. The proposed measurements do not rely on amplitudes, but on the measurement of signal frequency, which can be made significantly more precisely (down to errors of 0.2%) than comparable techniques. Furthermore, the present measurements will enable the direct simultaneous measurements of NO and temperature with a single laser, thus creating a unique statistical database for model validation. Finally, the technique will enable for the measurement of temperature fluctuations through a nozzle at very high precision, which has not been done previously. The high precision measurements will have a direct impact on assessing the quality of model predictions for NO and instabilities, and when translated into design codes, into the design of cleaner and more stable power and propulsion systems.
低排放燃气轮机的有效和快速设计关键取决于工程师对燃烧室内气体温度进行准确和精确预测的能力。该项目的目的是在模型和工业规模的燃烧室中产生有史以来最高精度和精确度的瞬时温度测量。这些精确测量的目的不仅是为工业和学术用户验证模型提供基础,而且还为开发用于实际燃烧室的低成本,高精度测温技术创造了一条道路。控制连续流燃烧室设计的两个关键因素是保持低排放-特别是氮氧化物-并使系统远离热声不稳定性。燃烧气体温度的空间和统计分布是控制一氧化氮(NO)形成的最重要的因素:在典型的燃烧温度下,50 K的局部变化可导致热NO形成率的70%的变化。由于缺乏关于温度的统计和空间信息,排放预测模型的验证受到限制。热声不稳定性是由反馈效应产生的,其中在受限环境中燃烧期间由流动的不稳定加速产生的声波导致热释放的进一步不稳定。与火焰相关的两个因素是重要的:火焰对声学扰动的响应,以及温度不均匀性(称为熵点)的产生:前者直接导致密度波动和声波,后者耦合边界条件以反射为压力波。燃烧不稳定性的起源的识别是复杂的,因为几个因素可以贡献波动,但通常只有压力信息是可用的,有时通过化学发光的相对总放热波动的帮助。然而,由于依赖于信号幅度校准的物理探针或光学方法的困难,对模型或工业规模燃气涡轮机火焰中的温度的统计测量相对不常见。所提出的测量不依赖于幅度,而是依赖于信号频率的测量,这可以比可比技术更精确(误差低至0.2%)。此外,目前的测量将使直接同时测量NO和温度与一个单一的激光,从而创建一个独特的统计数据库模型验证。最后,该技术将能够以非常高的精度测量通过喷嘴的温度波动,这在以前是没有做到的。高精度的测量将对评估NO和不稳定性的模型预测质量产生直接影响,并且当转化为设计规范时,将转化为更清洁和更稳定的动力和推进系统的设计。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature and water measurements in flames using 1064 nm Laser-Induced Grating Spectroscopy (LIGS)
使用 1064 nm 激光诱导光栅光谱 (LIGS) 测量火焰中的温度和水分
- DOI:10.17863/cam.38874
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:De Domenico F
- 通讯作者:De Domenico F
Extracting flame describing functions in the presence of self-excited thermoacoustic oscillations
在存在自激热声振荡的情况下提取火焰描述函数
- DOI:10.1016/j.proci.2016.06.050
- 发表时间:2017
- 期刊:
- 影响因子:3.4
- 作者:Balusamy S
- 通讯作者:Balusamy S
Detection of direct and indirect noise generated by synthetic hot spots in a duct
检测管道中合成热点产生的直接和间接噪声
- DOI:10.17863/cam.8524
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:De Domenico F
- 通讯作者:De Domenico F
Tracer-free laser-induced grating spectroscopy using a pulse burst laser at 100 kHz.
使用 100 kHz 脉冲突发激光器的无示踪剂激光诱导光栅光谱。
- DOI:10.17863/cam.44500
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:De Domenico F
- 通讯作者:De Domenico F
Compositional and entropy indirect noise generated in subsonic non-isentropic nozzles
亚音速非等熵喷嘴中产生的成分噪声和熵间接噪声
- DOI:10.17863/cam.58792
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:De Domenico F
- 通讯作者:De Domenico F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simone Hochgreb其他文献
A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery
用于废热和液化天然气冷能回收的热声冷热电联供 (CCHP) 系统
- DOI:
10.1016/j.energy.2021.120341 - 发表时间:
2021-03 - 期刊:
- 影响因子:9
- 作者:
Jingyuan Xu;Ercang Luo;Simone Hochgreb - 通讯作者:
Simone Hochgreb
Oxidation of hydrocarbons from lubricant oil layers in spark-ignition engines
- DOI:
10.1016/s0082-0784(96)80099-3 - 发表时间:
1996-01-01 - 期刊:
- 影响因子:
- 作者:
Michael G. Norris;Wolf Bauer;Simone Hochgreb - 通讯作者:
Simone Hochgreb
Reconciling turbulent burning velocity with flame surface area in small-scale turbulence
小规模湍流中湍流燃烧速度与火焰表面积的协调
- DOI:
10.1017/jfm.2018.841 - 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
G. Nivarti;RS Cant;Simone Hochgreb - 通讯作者:
Simone Hochgreb
Local statistics of turbulent spherical expanding flames for NHsub3/sub/CHsub4/sub/Hsub2/sub/air measured by 10 kHz PIV
NHSUB3/sub/chsub4/sub/sub/hsub2/sub/sib/sib/sib/sib/sib/sib/sib/sib/sib/sib/sib/sib/sib/sib/sub/sib/sub/sib/sib/sib/sib/sib/sib/sib/sib/sib/sib/sib/sib/sub/air的湍流球形膨胀火焰的局部统计数据。
- DOI:
10.1016/j.proci.2024.105251 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:5.200
- 作者:
Shixing Wang;Ayman M. Elbaz;Simone Hochgreb;William L. Roberts - 通讯作者:
William L. Roberts
Analysis of the information overlap between the PIV and math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si10.svg" class="math"msupmrowmi mathvariant="normal"OH/mi/mrowmo*/mo/msup/math chemiluminescence signals in turbulent flames using a sparse sensing framework
利用稀疏传感框架分析湍流火焰中 PIV 和数学 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si10.svg" class="math"msupmrowmi mathvariant="normal"OH/mi/mrowmo*/mo/msup/math 化学发光信号之间的信息重叠
- DOI:
10.1016/j.combustflame.2023.113004 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:6.200
- 作者:
Alberto Procacci;M. Mustafa Kamal;Simone Hochgreb;Axel Coussement;Alessandro Parente - 通讯作者:
Alessandro Parente
Simone Hochgreb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simone Hochgreb', 18)}}的其他基金
Understanding Turbulent Hydrogen Flames and Instability via Measurements and Simulations
通过测量和模拟了解湍流氢火焰和不稳定性
- 批准号:
EP/W034700/1 - 财政年份:2023
- 资助金额:
$ 54.16万 - 项目类别:
Research Grant
Tracer-free, non-intrusive, time- and space-resolved temperature and scalar measurements
无示踪剂、非侵入式、时间和空间分辨的温度和标量测量
- 批准号:
EP/T030801/1 - 财政年份:2020
- 资助金额:
$ 54.16万 - 项目类别:
Research Grant
Mechanisms and Synthesis of Materials for Next-Generation Lithium Batteries Using Flame Spray Pyrolysis
利用火焰喷雾热解制备下一代锂电池材料的机理和合成
- 批准号:
EP/T015845/1 - 财政年份:2020
- 资助金额:
$ 54.16万 - 项目类别:
Research Grant
SAMULET_Project_2_Combustion Systems for Low Environmental Impact
SAMULET_Project_2_低环境影响燃烧系统
- 批准号:
EP/G035784/1 - 财政年份:2009
- 资助金额:
$ 54.16万 - 项目类别:
Research Grant
相似国自然基金
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
- 批准号:82371379
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Ni-20Cr合金梯度纳米结构的低温构筑及其腐蚀行为研究
- 批准号:52301123
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
基于非接触测量的超高温MEMS压力传感器基础研究
- 批准号:51075375
- 批准年份:2010
- 资助金额:41.0 万元
- 项目类别:面上项目
新型高性能NBN基传感器材料的性能调控及其高温导电机理研究
- 批准号:51002087
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阴离子聚合速度及副反应控制机理及其用于(甲基)丙烯酸酯室温以上常规聚合的研究
- 批准号:50933002
- 批准年份:2009
- 资助金额:200.0 万元
- 项目类别:重点项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
智能控温兼控释药多法治癌用磁性聚合物微球
- 批准号:50702037
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Stress-strain measurements on high-temperature superconductors
高温超导体的应力应变测量
- 批准号:
2883958 - 财政年份:2023
- 资助金额:
$ 54.16万 - 项目类别:
Studentship
Ocean Surface Skin Temperature Measurements using an Optimal Spectral Band
使用最佳光谱带测量海洋表面皮肤温度
- 批准号:
2241269 - 财政年份:2023
- 资助金额:
$ 54.16万 - 项目类别:
Standard Grant
Harnessing cooperativity to achieve high-precision in vivo measurements
利用协作性实现高精度体内测量
- 批准号:
10745250 - 财政年份:2023
- 资助金额:
$ 54.16万 - 项目类别:
Direct measurements of Temperature and Transport Properties at Extreme Conditions
直接测量极端条件下的温度和传输特性
- 批准号:
MR/W008211/1 - 财政年份:2022
- 资助金额:
$ 54.16万 - 项目类别:
Fellowship
NOLA HEAT-MAP: New Orleans Home, Environment, and Ambient Temperature: Measurements and Analysis for Preparedness
NOLA 热图:新奥尔良住宅、环境和环境温度:准备情况的测量和分析
- 批准号:
10554805 - 财政年份:2022
- 资助金额:
$ 54.16万 - 项目类别:
A nanoscale thermocouple on a micromachined cantilever for intracellular temperature measurements
微机械悬臂上的纳米级热电偶用于细胞内温度测量
- 批准号:
2226930 - 财政年份:2022
- 资助金额:
$ 54.16万 - 项目类别:
Standard Grant
Time-resolved mass, temperature and pressure measurements for rocket engine testing
用于火箭发动机测试的时间分辨质量、温度和压力测量
- 批准号:
575039-2022 - 财政年份:2022
- 资助金额:
$ 54.16万 - 项目类别:
University Undergraduate Student Research Awards
Study of temperature resistant mechanisms of papain enzymes by single-molecule measurements
单分子测量研究木瓜蛋白酶的耐温机制
- 批准号:
21K06115 - 财政年份:2021
- 资助金额:
$ 54.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of low-temperature hydrogen absorption and diffusion into metal using inelastic electron spectroscopy measurements
使用非弹性电子能谱测量研究金属的低温氢吸收和扩散
- 批准号:
21H01605 - 财政年份:2021
- 资助金额:
$ 54.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
"Development of Skeletal Muscle Metabolic Imaging Using Temperature and Blood Flow Measurements with MRI"
“利用 MRI 测量温度和血流来开发骨骼肌代谢成像”
- 批准号:
21K21260 - 财政年份:2021
- 资助金额:
$ 54.16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




