Learning to learn how to design drugs
学习如何设计药物
基本信息
- 批准号:EP/K030469/1
- 负责人:
- 金额:$ 51.15万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A key step in developing a new drug is to learn quantitative structure activity relationships (QSARs). These are mathematical functions that predict how well chemical compounds will act as drugs. QSARs are used to guide the synthesis of new drugs.The current situation is:1) There is a vast range of approaches to learning QSARs.2) It is clear from theory and practice that the best QSAR approach depends on the type of problem.3) Currently the QSAR scientist has little to guide her/him on which QSAR approach to choose for a specific problem. We therefore propose to make a step-change in QSAR research. We will utilise newly available public domain chemoinformatic databases, and in-house datasets, to systematically run extensive comparative QSAR experiments. We will then generalise these results to learn which target-type/ compound-type/ compound-representation /learning-method combinations work best together. We do not propose to develop any new QSAR method. Rather, we will learn how to better apply existing QSAR methods. This approach is called "meta-learning", using machine learning to learn about QSAR leaning. We will make the knowledge we learn publically available to guide and improve future QSAR learning.
开发新药的关键步骤是了解定量结构活性关系(QSAR)。这些是数学函数,可以预测化合物作为药物的效果。QSAR用于指导新药的合成,目前的研究现状是:1)QSAR的学习方法多种多样; 2)从理论和实践上看,最佳的QSAR方法取决于问题的类型; 3)目前,QSAR科学家对具体问题选择哪种QSAR方法没有什么指导。因此,我们建议在QSAR研究中进行逐步改变。我们将利用新的公共领域化学信息学数据库和内部数据集,系统地运行广泛的比较QSAR实验。然后,我们将概括这些结果,以了解哪种目标类型/复合类型/复合表示/学习方法组合最好一起工作。我们不建议开发任何新的QSAR方法。相反,我们将学习如何更好地应用现有的QSAR方法。这种方法被称为“元学习”,使用机器学习来学习QSAR学习。我们将使我们学到的知识可用于指导和改善未来的QSAR学习。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds.
- DOI:10.1098/rsob.120158
- 发表时间:2013-02-27
- 期刊:
- 影响因子:5.8
- 作者:Bilsland E;Sparkes A;Williams K;Moss HJ;de Clare M;Pir P;Rowland J;Aubrey W;Pateman R;Young M;Carrington M;King RD;Oliver SG
- 通讯作者:Oliver SG
Predicting rice phenotypes with meta and multi-target learning
- DOI:10.1007/s10994-020-05881-9
- 发表时间:2020-08
- 期刊:
- 影响因子:7.5
- 作者:Oghenejokpeme I. Orhobor;N. Alexandrov;R. King
- 通讯作者:Oghenejokpeme I. Orhobor;N. Alexandrov;R. King
Transformational machine learning: Learning how to learn from many related scientific problems.
- DOI:10.1073/pnas.2108013118
- 发表时间:2021-12-07
- 期刊:
- 影响因子:11.1
- 作者:Olier I;Orhobor OI;Dash T;Davis AM;Soldatova LN;Vanschoren J;King RD
- 通讯作者:King RD
Multi-task learning with a natural metric for quantitative structure activity relationship learning.
具有自然度量的多任务学习,用于定量结构活动关系学习。
- DOI:10.1186/s13321-019-0392-1
- 发表时间:2019
- 期刊:
- 影响因子:8.6
- 作者:Sadawi N
- 通讯作者:Sadawi N
Generic ontology of datatypes
- DOI:10.1016/j.ins.2015.08.006
- 发表时间:2016-02-01
- 期刊:
- 影响因子:8.1
- 作者:Panov, Pance;Soldatova, Larisa N.;Dzeroski, Saso
- 通讯作者:Dzeroski, Saso
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross King其他文献
Technologies for Semantic Project-Driven Work Environments
语义项目驱动的工作环境技术
- DOI:
10.4018/978-1-59904-877-2.ch014 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Bernhard Schandl;Ross King;N. Popitsch;B. Rauter;Martin Povazay - 通讯作者:
Martin Povazay
Secured transactions technique based on smart contracts for situational awareness tools
基于智能合约的安全交易技术,用于态势感知工具
- DOI:
10.23919/icitst.2017.8356352 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Roman Graf;Ross King - 通讯作者:
Ross King
Networked insurgence and an anti-electoral democracy: Bangkok space 2014–2020
网络叛乱和反选举民主:曼谷空间 2014-2020
- DOI:
10.1177/23996544211050942 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ross King - 通讯作者:
Ross King
Inception-Based Network and Multi-Spectrogram Ensemble Applied To Predict Respiratory Anomalies and Lung Diseases
基于初始的网络和多谱图集成应用于预测呼吸异常和肺部疾病
- DOI:
10.1109/embc46164.2021.9629857 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
L. Pham;Huy Phan;Alexander Schindler;Ross King;A. Mertins;I. Mcloughlin - 通讯作者:
I. Mcloughlin
Does low parental warmth and monitoring predict disordered eating in Australian female and male adolescents?
- DOI:
10.1186/2050-2974-2-s1-o29 - 发表时间:
2014-11-24 - 期刊:
- 影响因子:4.500
- 作者:
Isabel Krug;Anisha Sorabji;Ross King;Primrose Letcher;Craig Olsson - 通讯作者:
Craig Olsson
Ross King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ross King', 18)}}的其他基金
AMBITION: AI-driven biomedical robotic automation for research continuity
雄心:人工智能驱动的生物医学机器人自动化,以实现研究的连续性
- 批准号:
EP/W004801/1 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别:
Research Grant
Adaptive Automated Scientific Laboratory
自适应自动化科学实验室
- 批准号:
EP/M015688/1 - 财政年份:2015
- 资助金额:
$ 51.15万 - 项目类别:
Research Grant
A robot scientist for drug design and chemical genetics
药物设计和化学遗传学机器人科学家
- 批准号:
BB/F008228/1 - 财政年份:2008
- 资助金额:
$ 51.15万 - 项目类别:
Research Grant
The Modelling Apprentice: A tool to aid the formation of cell signalling models
建模学徒:帮助形成细胞信号模型的工具
- 批准号:
BB/G000662/1 - 财政年份:2008
- 资助金额:
$ 51.15万 - 项目类别:
Research Grant
Development of an Ontology for Drug Screening and Design
药物筛选和设计本体论的开发
- 批准号:
BB/E018025/1 - 财政年份:2007
- 资助金额:
$ 51.15万 - 项目类别:
Research Grant
A robot scientist for yeast systems biology
酵母系统生物学机器人科学家
- 批准号:
BB/D00425X/1 - 财政年份:2006
- 资助金额:
$ 51.15万 - 项目类别:
Research Grant
相似海外基金
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 51.15万 - 项目类别:
Discovery Early Career Researcher Award
Touch to learn: How sensory cues impact word segmentation and learning
触摸学习:感官线索如何影响分词和学习
- 批准号:
10764458 - 财政年份:2023
- 资助金额:
$ 51.15万 - 项目类别:
Touch to learn: How sensory cues impact word segmentation and learning
触摸学习:感官线索如何影响分词和学习
- 批准号:
10584077 - 财政年份:2023
- 资助金额:
$ 51.15万 - 项目类别:
Collaborative Research: Developing Online Laboratories for Computer Science Students to Learn How to Build Accessible Software and to Use Artificial Intelligence/Machine Learning
合作研究:为计算机科学专业的学生开发在线实验室,以学习如何构建无障碍软件和使用人工智能/机器学习
- 批准号:
2111108 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别:
Standard Grant
Collaborative Research: Developing Online Laboratories for Computer Science Students to Learn How to Build Accessible Software and to Use Artificial Intelligence/Machine Learning
合作研究:为计算机科学专业的学生开发在线实验室,以学习如何构建无障碍软件和使用人工智能/机器学习
- 批准号:
2111152 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别:
Standard Grant
Teaching how to learn: promoting self-regulated learning in STEM classes
教授如何学习:在 STEM 课堂上促进自我调节学习
- 批准号:
DP190102366 - 财政年份:2019
- 资助金额:
$ 51.15万 - 项目类别:
Discovery Projects
Computational Study of Learning Strategies for Un-learning and Re-learning "How to Learn in the World"
取消学习和重新学习“如何在世界上学习”的学习策略的计算研究
- 批准号:
19K12064 - 财政年份:2019
- 资助金额:
$ 51.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning to see: How do social scientists learn to interpret fMRI?
学习观察:社会科学家如何学习解释功能磁共振成像?
- 批准号:
2271925 - 财政年份:2019
- 资助金额:
$ 51.15万 - 项目类别:
Studentship
How do (or don’t) we learn letters-sound associations? Neurocognitive processes underlying the learning of Grapheme-Phoneme-Correspondences
我们如何(或不)学习字母-声音关联?
- 批准号:
405007295 - 财政年份:2018
- 资助金额:
$ 51.15万 - 项目类别:
Research Grants
ICT Tools for Effective Formative Assessment in Fostering Learning How to Learn Skills
用于有效形成性评估的 ICT 工具,促进学习如何学习技能
- 批准号:
18K00790 - 财政年份:2018
- 资助金额:
$ 51.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)