Three-dimensional quantitative x-ray phase imaging

三维定量X射线相位成像

基本信息

  • 批准号:
    EP/L001381/1
  • 负责人:
  • 金额:
    $ 29.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

X-Ray Phase Contrast Imaging (XPCI) is one of the most exciting new methods emerged in x-ray science over recent years. It generates image contrast based on refraction and interference phenomena rather than x-ray attenuation, which enhances the visibility of all details in an image. Moreover, features classically considered "x-ray invisible" can be detected by XPCI. This has transformative power in many applications, from medicine to industrial testing, through biology, cultural heritage, material science, security inspections, and many other fields. It is worth remembering that the use of x-rays is all pervasive, both in science and in society, and all areas where x-ray imaging is used can strongly benefit from XPCI.The problem up to a few years ago was that XPCI was considered restricted to large, specialized and expensive facilities called synchrotrons - only approximately 50 of which exist in the world. However, my research group has recently solved this problem by developing a method that enables XPCI to be performed with conventional x-ray sources, like those used in hospitals. This will allow taking XPCI out of ultra-specialized labs and into "real-world" applications, and negotiations with various companies are indeed underway to take the technology into commercial exploitation.This project aims at developing the next generation of this technology. At the moment, our XPCI method works only in 2D, "planar" imaging applications. Although this is useful in itself, and is effectively employed in some areas (e.g. mammography or baggage scanning at airports), many other applications require the full 3D ("tomographic") reconstruction of the imaged sample. This is a well known problem in medicine, where for example some diseases cannot be diagnosed with a simple "x-ray" but require a CT (computed tomography) scan; the same principle also applies to many other areas, where full 3D knowledge of the sample is essential to the decision-making process that follows. Examples are in the development of new drugs, the effect of which is often assessed through high-resolution 3D images of the small animals on which they are tested, or in the testing of sophisticated mechanical parts or of new "composite" materials.This project therefore aims at the development of a quantitative, full 3D version of our XPCI method. This requires overcoming a number of obstacles, some of which have a very technical nature. For example, in order to make x-ray imaging systems sensitive to x-ray phase, we use masks, which cover parts of the imaged object. Although this does not create a problem in planar imaging, because the portions of the sample which are covered are smaller than the smallest element the imaging system can resolve (the detector pixel), it does result in significant artifacts when a 3D volume is reconstructed, because of a problem known as undersampling. This is also encountered in other disciplines (for example nuclear medicine), and researchers have developed new, more sophisticated reconstruction tools which allow solving or at least mitigating this problem. We therefore plan to adapt these new reconstruction tools to the specific requirements of our XPCI method, so that reliable and quantitative 3D "phase" reconstruction can be performed.Initially, this will be based on an extensive simulation phase during which different algorithms will be tested on various datasets, which will enable identifying the most promising ones. This will be followed by an experimental phase in which we will test the algorithms on real experimental data: this will allow selecting the best solution and fine-tuning it. Finally, there will be a demonstration phase in which the optimized 3D method will be applied to real scientific problems, among which for example the 3D visualization of small damage in articular cartilage (notoriously invisible to conventional x-ray methods), or of intrusion/defects in new-generation composite materials.
X射线相位衬度成像(XPCI)是近年来X射线科学中出现的最令人兴奋的新方法之一。它基于折射和干涉现象而不是X射线衰减生成图像对比度,从而增强图像中所有细节的可见性。此外,传统上被认为是“X射线不可见”的特征可以通过XPCI检测。这在许多应用中具有变革性的力量,从医学到工业测试,通过生物学,文化遗产,材料科学,安全检查和许多其他领域。值得记住的是,X射线的使用是无处不在的,无论是在科学还是在社会中,所有使用X射线成像的领域都可以从XPCI中受益匪浅。直到几年前,XPCI还被认为仅限于称为同步加速器的大型,专业和昂贵的设施-世界上只有大约50个。然而,我的研究小组最近通过开发一种方法解决了这个问题,该方法使XPCI能够使用传统的X射线源(如医院中使用的X射线源)进行。这将使XPCI走出超专业的实验室,进入“现实世界”的应用,并与多家公司的谈判确实正在进行中,以将该技术投入商业开发。该项目旨在开发下一代这项技术。目前,我们的XPCI方法仅适用于2D“平面”成像应用。尽管这本身是有用的,并且在某些领域(例如,机场的乳房X线摄影或行李扫描)中有效地采用,但许多其他应用需要成像样本的全3D(“断层摄影”)重建。这是医学中的一个众所周知的问题,例如,一些疾病不能用简单的“X射线”诊断,而需要CT(计算机断层扫描)扫描;同样的原理也适用于许多其他领域,其中样本的完整3D知识对于随后的决策过程至关重要。例如,在新药开发中,通常通过测试小动物的高分辨率3D图像来评估其效果,或者在复杂机械部件或新“复合”材料的测试中。因此,该项目旨在开发我们的XPCI方法的定量全3D版本。这就需要克服一些障碍,其中有些是技术性很强的障碍。例如,为了使X射线成像系统对X射线相位敏感,我们使用掩模,其覆盖成像对象的部分。虽然这不会在平面成像中产生问题,但因为被覆盖的样本部分小于成像系统可以分辨的最小元素(检测器像素),所以当重建3D体积时,由于被称为欠采样的问题,这确实会导致显著的伪影。这在其他学科(例如核医学)中也会遇到,研究人员已经开发出新的,更复杂的重建工具,可以解决或至少减轻这个问题。因此,我们计划使这些新的重建工具适应我们的XPCI方法的特定要求,以便可以执行可靠和定量的3D“相位”重建。最初,这将基于广泛的模拟阶段,在此期间,不同的算法将在各种数据集上进行测试,这将能够识别最有前途的算法。接下来是实验阶段,我们将在真实的实验数据上测试算法:这将允许选择最佳解决方案并对其进行微调。最后,将有一个演示阶段,其中优化的3D方法将应用于真实的科学问题,例如关节软骨中小损伤的3D可视化(众所周知,传统的X射线方法不可见),或新一代复合材料中的侵入/缺陷。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reverse projection retrieval in edge illumination x-ray phase contrast computed tomography
  • DOI:
    10.1088/0022-3727/49/25/255501
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Hagen;M. Endrizzi;P. Diemoz;A. Olivo
  • 通讯作者:
    C. Hagen;M. Endrizzi;P. Diemoz;A. Olivo
On the relative performance of edge illumination x-ray phase-contrast CT and conventional, attenuation-based CT.
边缘照明 X 射线相衬 CT 与传统衰减 CT 的相对性能。
  • DOI:
    10.1002/mp.12179
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hagen CK
  • 通讯作者:
    Hagen CK
A continuous sampling scheme for edge illumination x-ray phase contrast imaging
  • DOI:
    10.1063/1.4927729
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    C. Hagen;P. Coan;A. Bravin;A. Olivo;P. Diemoz
  • 通讯作者:
    C. Hagen;P. Coan;A. Bravin;A. Olivo;P. Diemoz
Edge-illumination X-ray phase contrast imaging: matching the imaging method to the detector technology
  • DOI:
    10.1088/1748-0221/9/11/c11004
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    M. Endrizzi;P. Diemoz;C. Hagen;F. Vittoria;P. Munro;L. Rigon;D. Dreossi;F. Arfelli;F. Lopez;R. Longo;M. Marenzana;P. Delogu;A. Vincenzi;L. D. Ruvo;G. Spandre;A. Brez;R. Bellazzini;A. Olivo
  • 通讯作者:
    M. Endrizzi;P. Diemoz;C. Hagen;F. Vittoria;P. Munro;L. Rigon;D. Dreossi;F. Arfelli;F. Lopez;R. Longo;M. Marenzana;P. Delogu;A. Vincenzi;L. D. Ruvo;G. Spandre;A. Brez;R. Bellazzini;A. Olivo
Monochromatic Propagation-Based Phase-Contrast Microscale Computed-Tomography System with a Rotating-Anode Source
  • DOI:
    10.1103/physrevapplied.11.034004
  • 发表时间:
    2019-03-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Brombal, L.;Kallon, G.;Endrizzi, M.
  • 通讯作者:
    Endrizzi, M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alessandro Olivo其他文献

Optical characterisation of a CMOS active pixel sensor using periodic noise reduction techniques
  • DOI:
    10.1016/j.nima.2010.03.138
  • 发表时间:
    2010-08-11
  • 期刊:
  • 影响因子:
  • 作者:
    Anastasios C. Konstantinidis;Alessandro Olivo;Peter R.T. Munro;Sarah E. Bohndiek;Robert D. Speller
  • 通讯作者:
    Robert D. Speller
Coded-apertures take x-ray phase contrast imaging out of the synchrotrons and into real world applications
编码孔径将 X 射线相衬成像从同步加速器中带入现实世界的应用
An Operational Model for Empty Container Management
  • DOI:
    10.1057/palgrave.mel.9100136
  • 发表时间:
    2005-08-30
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Alessandro Olivo;Paola Zuddas;Massimo Di Francesco;Antonio Manca
  • 通讯作者:
    Antonio Manca

Alessandro Olivo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alessandro Olivo', 18)}}的其他基金

Nikon-UCL Prosperity Partnership on Next-Generation X-Ray Imaging
尼康与伦敦大学学院就下一代 X 射线成像达成繁荣合作伙伴关系
  • 批准号:
    EP/T005408/1
  • 财政年份:
    2020
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Research Grant
Improving the outcomes of oesophageal interventions through novel x-ray based imaging methods
通过基于 X 射线的新型成像方法改善食管干预的结果
  • 批准号:
    EP/P023231/1
  • 财政年份:
    2017
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Research Grant
Transforming the use of x-rays in science and society
改变 X 射线在科学和社会中的使用
  • 批准号:
    EP/I021884/1
  • 财政年份:
    2011
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Research Grant
a novel phase contrast technique with the potential of revolutionizing x-ray imaging applications in medicine, biology, industry and security
一种新颖的相衬技术,具有彻底改变医学、生物学、工业和安全领域 X 射线成像应用的潜力
  • 批准号:
    EP/G004250/1
  • 财政年份:
    2009
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Fellowship

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
  • 批准号:
    81150011
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
肝脏管道系统数字化及三维成像的研究
  • 批准号:
    30470493
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

A three-dimensional quantitative study of social learning and ceramic style formation in Japanese prehistoric pottery makers
日本史前陶艺家社会学习与陶瓷风格形成的三维定量研究
  • 批准号:
    22KF0305
  • 财政年份:
    2023
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mobile Three-Dimensional Screening for Cranial Malformations
颅骨畸形移动三维筛查
  • 批准号:
    10888913
  • 财政年份:
    2023
  • 资助金额:
    $ 29.19万
  • 项目类别:
Quantitative study on the non-linear viscoelasticity of connective tissues using in vivo three-dimensional dynamic imaging
利用体内三维动态成像定量研究结缔组织的非线性粘弹性
  • 批准号:
    22K09879
  • 财政年份:
    2022
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mobile Three-Dimensional Screening for Cranial Malformations
颅骨畸形移动三维筛查
  • 批准号:
    10482547
  • 财政年份:
    2022
  • 资助金额:
    $ 29.19万
  • 项目类别:
Toward Quantitative Three-Dimensional and Three-Component Velocimetry in Reactive Flows
反应流中的定量三维和三分量测速
  • 批准号:
    2139178
  • 财政年份:
    2022
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Standard Grant
Using three-dimensional genome structure to refine eQTL detection
利用三维基因组结构完善eQTL检测
  • 批准号:
    10356618
  • 财政年份:
    2021
  • 资助金额:
    $ 29.19万
  • 项目类别:
Three-dimensional quantitative evaluation of pyrophosphate scintigraphy for the diagnosis of cardiac amyloidosis
焦磷酸盐显像诊断心脏淀粉样变性的三维定量评价
  • 批准号:
    20K16721
  • 财政年份:
    2020
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Three-Dimensional UTE Magnetic Resonance Imaging of the Osteochondral Junction
骨软骨连接处的三维 UTE 磁共振成像
  • 批准号:
    10207470
  • 财政年份:
    2020
  • 资助金额:
    $ 29.19万
  • 项目类别:
Three-Dimensional UTE Magnetic Resonance Imaging of the Osteochondral Junction
骨软骨连接处的三维 UTE 磁共振成像
  • 批准号:
    10058140
  • 财政年份:
    2020
  • 资助金额:
    $ 29.19万
  • 项目类别:
Temporality of bone loss on long-duration spaceflight using three-dimensional high-resolution imaging
使用三维高分辨率成像研究长时间太空飞行中骨质流失的暂时性
  • 批准号:
    440246
  • 财政年份:
    2020
  • 资助金额:
    $ 29.19万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了