Shock/turbulence interactions in dense gases
稠密气体中的冲击/湍流相互作用
基本信息
- 批准号:EP/L021676/1
- 负责人:
- 金额:$ 12.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To reduce the UK's greenhouse-gas emissions anywhere near the legally-binding 2050 targets, a major attack on both energy wastes and unsustainable forms of electricity production is essential. Owing to their appealing thermo-physical properties (e.g. large heat capacity relatively to the molecular weight, low boiling point, elevated density), molecularly-complex and dense gases (e.g. hydrocarbons, perfluorocarbons, siloxanes) are at the heart of realistic solutions for thermal power stations to operate efficiently on low-temperature heat sources (e.g. solar, biomass, geothermal), where they are used as substitute for water steam (e.g. organic Rankine cycle). Flow expanders in such power stations partially operate in the vicinity of the thermodynamic critical point, where the speed of sound is substantially reduced, turning the expander flow into a highly supersonic gas flow, inevitably leading to the formation of shock waves.Shock waves have the detrimental property of degrading the expander efficiency by dissipating kinetic energy into heat, and by promoting viscous losses through boundary-layer separation and thickening. Quite remarkably, and contrary to ideal gases, shock waves in molecularly-complex and dense gases can be made almost isothermal, therefore relieving part of the efficiency losses imparted by the shock wave. This remarkable property is a direct consequence of the exceptionally large number of active degrees of freedom of the gas molecule. While the prospect of efficient supersonic expanders is appealing, little is known on the implication near-isentropic shocks have on the amplification of turbulence fluctuations (which are always present in turbines). In particular, shock/turbulence interactions in dense gases can lead to the emission of energetic acoustic waves, which are significantly more powerful than in standard ideal gases. If present, such acoustic forcing can erode the expected turbine efficiency, generate vibrations and cause premature blade fatigue. The proposed research will establish a robust and fundamental understanding of sound emission from shock/turbulence interactions in dense gases, and provide a new understanding of the underlying physics, which will allow the development of predictive tools that can inform future design choices.
为了将英国的温室气体排放量减少到接近具有法律约束力的2050年目标,必须大力打击能源浪费和不可持续的电力生产形式。由于其具有吸引人的热物理性能(例如,相对于分子量的大热容、低沸点、高密度)、分子复杂和致密气体(例如碳氢化合物、全氟化碳、硅氧烷)是热电站在低温热源上高效运行的现实解决方案的核心(例如太阳能、生物质、地热),其中它们用作水蒸汽的替代物(例如有机朗肯循环)。在这种发电站中的流量膨胀器部分地在热力学临界点附近操作,在该临界点处声速显著降低,将膨胀器流转变成高度超音速的气流,不可避免地导致冲击波的形成。冲击波具有通过将动能耗散成热而降低膨胀器效率的有害特性,以及通过边界层分离和增厚促进粘性损失。非常值得注意的是,与理想气体相反,分子复杂和致密气体中的激波几乎可以等温,因此减轻了激波造成的部分效率损失。这种显著的性质是气体分子的活动自由度异常大的直接结果。虽然高效超音速膨胀机的前景很吸引人,但对近等熵激波对湍流波动放大(涡轮机中总是存在湍流波动)的影响知之甚少。特别是,稠密气体中的激波/湍流相互作用可以导致高能声波的发射,其比标准理想气体中的能量大得多。如果存在的话,这种声学强迫会侵蚀预期的涡轮机效率,产生振动并导致叶片过早疲劳。拟议的研究将建立对致密气体中激波/湍流相互作用的声音发射的强大和基本的理解,并提供对基础物理的新理解,这将允许开发预测工具,为未来的设计选择提供信息。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Small-scale two-dimensional turbulence shaped by bulk viscosity
- DOI:10.1017/jfm.2019.531
- 发表时间:2019-07
- 期刊:
- 影响因子:3.7
- 作者:E. Touber
- 通讯作者:E. Touber
One-dimensional refraction properties of compression shocks in non-ideal gases
- DOI:10.1017/jfm.2017.10
- 发表时间:2017-03-10
- 期刊:
- 影响因子:3.7
- 作者:Alferez, Nicolas;Touber, Emile
- 通讯作者:Touber, Emile
Shock-induced energy conversion of entropy in non-ideal fluids
非理想流体中冲击引起的熵能量转换
- DOI:10.1017/jfm.2019.25
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Touber E
- 通讯作者:Touber E
Shock-induced energy transfers in dense gases
稠密气体中冲击引起的能量转移
- DOI:10.1088/1742-6596/821/1/012019
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Alferez N
- 通讯作者:Alferez N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emile Touber其他文献
Emile Touber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
流体湍流运动的相关数学分析
- 批准号:10971174
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Temporal variability of energetic turbulence caused by the Kuroshio-seamount interactions in Tokara Strait
吐噶喇海峡黑潮-海山相互作用引起的能量湍流的时间变化
- 批准号:
23K19062 - 财政年份:2023
- 资助金额:
$ 12.77万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Convective Cloud Dynamics and Turbulence Interactions with Microphysical Processes and the Atmospheric Environment (CLOUDY TIME)
对流云动力学和湍流与微物理过程和大气环境的相互作用(云时)
- 批准号:
NE/X018547/1 - 财政年份:2023
- 资助金额:
$ 12.77万 - 项目类别:
Research Grant
Impact of turbulence on blood in mechanical circulatory support
机械循环支持中湍流对血液的影响
- 批准号:
10634686 - 财政年份:2022
- 资助金额:
$ 12.77万 - 项目类别:
Understanding the Coupled Interactions Between Hair-Like Micromechanoreceptors and Wall Turbulence
了解毛发状微机械感受器与壁湍流之间的耦合相互作用
- 批准号:
2224849 - 财政年份:2022
- 资助金额:
$ 12.77万 - 项目类别:
Standard Grant
Control of Fluid-Structure Interactions: Finite Dimensional Strategies for Flutter/Turbulence Suppression
流固耦合控制:颤振/湍流抑制的有限维策略
- 批准号:
2205508 - 财政年份:2022
- 资助金额:
$ 12.77万 - 项目类别:
Standard Grant
Hierarchical turbulence and mechanical modelling of rotor-airframe interactions
旋翼-机身相互作用的分层湍流和力学建模
- 批准号:
2885833 - 财政年份:2022
- 资助金额:
$ 12.77万 - 项目类别:
Studentship
CAREER: Advancing the Understanding of Turbulence-Microphysics Interactions in Clouds Through Multiscale Numerical Modeling
职业:通过多尺度数值建模增进对云中湍流-微物理相互作用的理解
- 批准号:
2142982 - 财政年份:2022
- 资助金额:
$ 12.77万 - 项目类别:
Continuing Grant
Collaborative Research: Extreme Thermal Transport Events in Supersonic and Hypersonic Shock Wave-Turbulence Interactions
合作研究:超音速和高超音速冲击波-湍流相互作用中的极端热传输事件
- 批准号:
2041618 - 财政年份:2021
- 资助金额:
$ 12.77万 - 项目类别:
Standard Grant
Geophysical wave-vortex interactions and turbulence
地球物理波涡相互作用和湍流
- 批准号:
2108225 - 财政年份:2021
- 资助金额:
$ 12.77万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Thermal Transport Events in Supersonic and Hypersonic Shock Wave-Turbulence Interactions
合作研究:超音速和高超音速冲击波-湍流相互作用中的极端热传输事件
- 批准号:
2041622 - 财政年份:2021
- 资助金额:
$ 12.77万 - 项目类别:
Standard Grant