Control of Fluid-Structure Interactions: Finite Dimensional Strategies for Flutter/Turbulence Suppression
流固耦合控制:颤振/湍流抑制的有限维策略
基本信息
- 批准号:2205508
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this mathematical research project is to identify and construct physically implementable control strategies for suppression of turbulence, which is fluid motion characterized by chaotic changes in pressure and flow velocity, and control of flutter, which is sustained oscillation that may occur when a nonlinear body is subject to surrounding inviscid flow. The results are anticipated to inform several important application areas, including aerodynamic design and renewable energy systems in which harvesting flutter is a goal. The project involves collaboration with engineers and will train graduate students through research involvement in modeling, data assimilation, and scientific computing.The project studies questions in control theory and corresponding control strategies with focus on physical phenomena governed by three-dimensional (3D) fluids, flow/fluid-structure interactions which induce strong instabilities in their dynamics. The main goal is to establish flutter-suppression and turbulence-suppression by means of finite dimensional control strategies. The objectives of the project are: (i) finite dimensional attracting sets to capture flutter of the oscillating structure, (ii) finite dimensional boundary feedback stabilization of 3D fluids, and (iii) control theory for 3D fluid-structures with moving interface. The investigation of flutter will require the theory of non-dissipative dynamical systems and their attractors, along with microlocal analysis. In this project, investigation of turbulence in 3D will require Besov spaces of tight indices and maximal regularity (R-boundedness theory) of boundary-feedback partial differential equations. Quasilinear theory and sharp estimates for the hyperbolic Dirichlet-Neumann map will be essential tools in controlling bodies moving in a fluid, where global existence is still an open problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个数学研究项目的目标是识别和构建物理上可实现的控制策略,用于抑制湍流,这是以压力和流速的混沌变化为特征的流体运动,以及控制颤振,这是当非线性体受到周围无粘流时可能发生的持续振荡。预计这些结果将为几个重要的应用领域提供信息,包括空气动力学设计和可再生能源系统,其中收集颤振是一个目标。本项目将与工程师合作,通过建模、数据同化、科学计算等方面的研究,培养研究生。本项目将研究控制理论和相应的控制策略问题,重点关注由三维(3D)流体控制的物理现象,以及在其动力学中引起强烈不稳定性的流动/流体-结构相互作用。其主要目标是通过有限维控制策略建立颤振抑制和颤振抑制。该项目的目标是:(i)有限维吸引集捕捉颤振的振荡结构,(ii)有限维边界反馈稳定的三维流体,和(iii)控制理论的三维流体结构与移动界面。颤振的研究需要非耗散动力系统理论及其吸引子,沿着微局部分析。在这个项目中,在三维湍流的研究将需要紧指标和边界反馈偏微分方程的最大正则性(R-有界理论)的Besov空间。准线性理论和双曲狄利克雷-诺伊曼映射的精确估计将成为控制流体中运动物体的重要工具,其中全球存在仍然是一个悬而未决的问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boundary feedback stabilization of a critical nonlinear JMGT equation with Neumann-undissipated part of the boundary
具有边界诺依曼未耗散部分的临界非线性 JMGT 方程的边界反馈稳定性
- DOI:10.3934/dcdss.2022107
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bongarti, Marcelo;Lasiecka, Irena
- 通讯作者:Lasiecka, Irena
Optimal Feedback Arising in a Third-Order Dynamics with Boundary Controls and Infinite Horizon
具有边界控制和无限视野的三阶动力学中产生的最优反馈
- DOI:10.1007/s10957-022-02017-y
- 发表时间:2022
- 期刊:
- 影响因子:1.9
- 作者:Lasiecka, Irena;Triggiani, Roberto
- 通讯作者:Triggiani, Roberto
Uniqueness of the Riccati operator of the non-standard ARE of a third order dynamics with boundary control
边界控制三阶动力学非标准ARE Riccati算子的唯一性
- DOI:10.2478/candc-2022-0013
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lasiecka, Irena;Triggiani, Roberto
- 通讯作者:Triggiani, Roberto
Long-time dynamics of a hinged-free plate driven by a nonconservative force
非保守力驱动的无铰板的长期动力学
- DOI:10.4171/aihpc/13
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Webster, Justin;Bonheure, Denis;Gazzola, Filippo;Lasiecka, Irena
- 通讯作者:Lasiecka, Irena
Finite-dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory
- DOI:10.1515/jiip-2020-0132
- 发表时间:2021-04
- 期刊:
- 影响因子:1.1
- 作者:I. Lasiecka;Buddhika Priyasad;R. Triggiani
- 通讯作者:I. Lasiecka;Buddhika Priyasad;R. Triggiani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irena Lasiecka其他文献
Uniform Stabilization of Navier–Stokes Equations in Critical $$L^q$$ -Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls
- DOI:
10.1007/s00245-019-09607-9 - 发表时间:
2019-09-25 - 期刊:
- 影响因子:1.700
- 作者:
Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani - 通讯作者:
Roberto Triggiani
Finite Difference Approximation of State and Control Constrained Optimal Control Problem for System with Delay
- DOI:
10.1016/s1474-6670(17)66962-3 - 发表时间:
1977-01-01 - 期刊:
- 影响因子:
- 作者:
Irena Lasiecka - 通讯作者:
Irena Lasiecka
Convergence of Numerical Algorithms for the Approximations to Riccati Equations Arising in Smart Material Acoustic Structure Interactions
- DOI:
10.1023/a:1008610631744 - 发表时间:
1997-07-01 - 期刊:
- 影响因子:2.000
- 作者:
Erik Hendrickson;Irena Lasiecka - 通讯作者:
Irena Lasiecka
Attractors for Second-Order Evolution Equations with a Nonlinear Damping
- DOI:
10.1007/s10884-004-4289-x - 发表时间:
2004-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Igor Chueshov;Irena Lasiecka - 通讯作者:
Irena Lasiecka
Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers
- DOI:
10.1007/s40687-024-00490-7 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:1.200
- 作者:
Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani - 通讯作者:
Roberto Triggiani
Irena Lasiecka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irena Lasiecka', 18)}}的其他基金
Collaborative Research: Promoting Success in Undergraduate Mathematics through Graduate Teaching Assistant Training
合作研究:通过研究生助教培训促进本科数学的成功
- 批准号:
1821619 - 财政年份:2018
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Interface Control for Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的接口控制
- 批准号:
1713506 - 财政年份:2017
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
- 批准号:
1444215 - 财政年份:2013
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
- 批准号:
1108871 - 财政年份:2011
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Control Problems for Strongly Coupled Non-Linear Partial Differential Equations
强耦合非线性偏微分方程的控制问题
- 批准号:
0606682 - 财政年份:2006
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
US-France Cooperative Research (INRIA): Control of Interactive Structures with Dynamic Shells
美法合作研究(INRIA):用动态壳控制交互结构
- 批准号:
0226961 - 财政年份:2003
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Control problems for systems of strongly coupled partial differential equations with variable coefficients.
具有变系数的强耦合偏微分方程组的控制问题。
- 批准号:
0104305 - 财政年份:2001
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Control Problems of Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的控制问题
- 批准号:
9804056 - 财政年份:1998
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
- 批准号:
9504822 - 财政年份:1995
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Shape Analysis of DampingProcesses for Elastic Systems in Structural Modelling
美法合作研究:结构建模中弹性系统阻尼过程的形状分析
- 批准号:
9218323 - 财政年份:1993
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
相似国自然基金
随机进程代数模型的Fluid逼近问题研究
- 批准号:61472343
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
- 批准号:11275269
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Active control of sounds, vibrations and fluid-structure interactions
声音、振动和流固相互作用的主动控制
- 批准号:
RGPIN-2020-04812 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Leveraging Fluid-Structure Interactions for Efficient Control in Geophysical Flows
合作研究:利用流固相互作用有效控制地球物理流
- 批准号:
2121887 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Active control of sounds, vibrations and fluid-structure interactions
声音、振动和流固相互作用的主动控制
- 批准号:
RGPIN-2020-04812 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Leveraging Fluid-Structure Interactions for Efficient Control in Geophysical Flows
合作研究:利用流固相互作用有效控制地球物理流
- 批准号:
2121919 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Fluid-Structure Interactions for Efficient Control in Geophysical Flows
合作研究:利用流固相互作用有效控制地球物理流
- 批准号:
2121923 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Active control of sounds, vibrations and fluid-structure interactions
声音、振动和流固相互作用的主动控制
- 批准号:
RGPIN-2020-04812 - 财政年份:2020
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Control of local flow structure of viscoelastic fluid in the vicinity of bubble interface using pressure-oscillation field and its application
压力振荡场控制气泡界面附近粘弹性流体局部流动结构及其应用
- 批准号:
20K04285 - 财政年份:2020
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Fluid-Structure-Control Interactions in Bioinspired Robots with Actively Morphing Fins
职业:具有主动变形鳍的仿生机器人中的流-结构-控制相互作用
- 批准号:
1847513 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Efficient Modeling of Fluid-Structure Interaction in Flapping, Flexible Wings for Real-Time Control and Parametric Design
扑动柔性机翼中流固耦合的高效建模,用于实时控制和参数化设计
- 批准号:
1855383 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Dynamics and control of fluid-structure-free surface interactions
无流固表面相互作用的动力学和控制
- 批准号:
DP170100275 - 财政年份:2017
- 资助金额:
$ 34万 - 项目类别:
Discovery Projects