Engineering Fellowships for Growth: Printable Tactile Skin

增长工程奖学金:可打印的触觉皮肤

基本信息

  • 批准号:
    EP/M002527/1
  • 负责人:
  • 金额:
    $ 138.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The societal needs such as helping elderly and rapid technological advances have transformed robotics in recent years. Making robots autonomous and at the same time able to interact safely with real world objects is desired in order to extend their range of applications to highly interactive tasks such as caring for the elderly. However, attaining robots capable of doing such tasks is challenging as the environmental model they often use is incomplete, which underlines the importance of sensors to obtain information at a sufficient rate to deal with external change. In robotics, the sensing modality par excellence so far has been vision in its multiple forms, for example lasers, or simply stereoscopic arrangements of conventional cameras. On other hand the animal world uses a wider variety of sensory modalities. The tactile/touch sensing is particularly important as many of the interactive tasks involve physical contact which carry precious information that is exploited by biological brains and ought to be exploited by robots to ensure adaptive behaviour. However, the absence of suitable tactile skin technology makes this task difficult. PRINTSKIN will develop a robust ultra-flexible tactile skin and endow state-of-the-art robotic hand with the tactile skin and validate the skin by using tactile information from large areas of robot hands to handle daily object with different curvatures. The tactile skin will be benchmarked against available semi-rigid skins such as iCub skin from EU project ROBOSKIN and Hex-O-Skin. The skin will be validated on at least two different industrial robotic hands (Shadow Hand and i-Limb) that are used in dexterous manipulation and prosthetics.The robust ultra-thin tactile skin will be developed using an innovative methodology involving printing of high-mobility materials such as silicon on ultra-flexible substrates such as polyimide. The tactile skin will have solid-state sensors (touch, temperature) and electronics printed on ultra-flexible substrates such as polyimide. The silicon-nanowires based ultra-thin active-matrix electronics in the backplane will be covered with a replaceable soft transducer layer. Integration of electronic and sensing modules on a foil or as stack of foils will be explored. 'Truly bottom-up approach' is the distinguishing feature of PRINTSKIN methodology as the development of tactile skin will begin with atom by atom synthesis of nanowires and finish with the development of tactile skin system - much like the way nature uses proteins and macromolecules to construct complex biological systems. This new technological platform to print tactile skin will enable an entirely new generation of high-performance and cost-effective systems on flexible substrates. Fabrication by printing will have important implications for cost-effective integration over large areas and on nonconventional substrates, such as plastic or paper. Printing of high-performance electronics is also appealing for mask-less approach, reduced material wastage, and scalability to large area. The proposed programme thus has the potential to emulate yet another revolution in the electronics industry and trigger transformation in various sectors including, robotics, healthcare, and wearable electronics.
近年来,帮助老年人和快速技术进步等社会需求改变了机器人技术。为了将机器人的应用范围扩展到高度交互的任务,如照顾老年人,人们希望使机器人在自主的同时能够安全地与现实世界的物体交互。然而,获得能够完成此类任务的机器人是具有挑战性的,因为它们经常使用的环境模型是不完整的,这突显了传感器以足够的速度获取信息以应对外部变化的重要性。在机器人学中,到目前为止,传感方式的卓越之处在于其多种形式的视觉,例如激光,或者只是传统相机的立体布置。另一方面,动物世界使用了更多种类的感官形式。触觉/触觉感知特别重要,因为许多交互任务涉及身体接触,这些接触携带着宝贵的信息,生物大脑利用这些信息,机器人应该利用这些信息来确保适应行为。然而,缺乏合适的触觉皮肤技术使这项任务变得困难。PRINTSKIN将开发一种坚固的超弹性触觉皮肤,并赋予最先进的机械手触觉皮肤,并通过使用机器手大面积的触觉信息来处理不同曲率的日常物体来验证皮肤。触觉皮肤将以现有的半刚性皮肤为基准,如欧盟项目ROBOSKIN和Hex-O-Skin的iCub皮肤。这种皮肤将在至少两种用于灵巧操作和假肢的不同工业机器人手(Shadow Hand和I-Limb)上进行验证。这种坚固的超薄触觉皮肤将使用一种创新的方法来开发,该方法涉及在聚酰亚胺等超柔性衬底上打印高流动性材料,如硅。触觉皮肤将拥有固态传感器(触摸、温度)和印刷在聚酰亚胺等超柔性基板上的电子设备。背板中基于硅纳米线的超薄有源矩阵电子设备将被可更换的软换能器层覆盖。将探索将电子和传感模块集成在箔片上或作为箔片堆叠。PRINTSKIN方法论的显著特点在于,触觉皮肤的发展将从一个原子接一个原子地合成纳米线开始,直到触觉皮肤系统的发展--就像大自然利用蛋白质和大分子构建复杂的生物系统一样。这一打印触觉皮肤的新技术平台将在柔性基板上实现全新的高性能和高性价比系统。印刷制造将对大面积和非传统基板(如塑料或纸张)的成本效益集成产生重要影响。高性能电子产品的印刷也因无掩模方法、减少材料损耗和大面积可伸缩性而受到欢迎。因此,拟议中的计划有可能效仿电子行业的又一场革命,并引发机器人、医疗保健和可穿戴电子等多个行业的转型。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of the vertical alignment of nanowires on the quality of printed electronic layers
纳米线垂直排列对印刷电子层质量的影响
  • DOI:
    10.1109/fleps51544.2021.9469856
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christou A
  • 通讯作者:
    Christou A
PEDOT:PSS Microchannel-Based Highly Sensitive Stretchable Strain Sensor
  • DOI:
    10.1002/aelm.202000445
  • 发表时间:
    2020-07-14
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Bhattacharjee, Mitradip;Soni, Mahesh;Dahiya, Ravinder
  • 通讯作者:
    Dahiya, Ravinder
Pseudo-Hologram with Aerohaptic Feedback for Interactive Volumetric Displays
  • DOI:
    10.1002/aisy.202100090
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Christou, Adamos;Chirila, Radu;Dahiya, Ravinder
  • 通讯作者:
    Dahiya, Ravinder
Disposable and Flexible Sensor Patch for a-amylase Detection in Human Blood Serum
用于人体血清中α-淀粉酶检测的一次性柔性传感器贴片
  • DOI:
    10.1109/sensors47125.2020.9278674
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhattacharjee M
  • 通讯作者:
    Bhattacharjee M
Touch Interactive 3D Surfaces
触摸交互式 3D 表面
  • DOI:
    10.1109/fleps49123.2020.9239553
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christou A
  • 通讯作者:
    Christou A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ravinder Dahiya其他文献

Intelligent machines work in unstructured environments by differential neuromorphic computing
智能机器通过差分神经形态计算在非结构化环境中工作
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbo Wang;Shuo Gao;Chenyu Tang;Edoardo Occhipinti;Cong Li;Shurui Wang;Jiaqi Wang;Hubin Zhao;Guohua Hu;A. Nathan;Ravinder Dahiya;L. Occhipinti
  • 通讯作者:
    L. Occhipinti
End-of-Life usefulness of degradation by products from transient electronics
瞬态电子产品降解副产品的报废期有用性
  • DOI:
    10.1038/s41528-025-00411-w
  • 发表时间:
    2025-05-07
  • 期刊:
  • 影响因子:
    15.500
  • 作者:
    Sofia Sandhu;Ravinder Dahiya
  • 通讯作者:
    Ravinder Dahiya
Ultra-thin chips for high-performance flexible electronics
用于高性能柔性电子设备的超薄芯片
  • DOI:
    10.1038/s41528-018-0021-5
  • 发表时间:
    2018-03-14
  • 期刊:
  • 影响因子:
    15.500
  • 作者:
    Shoubhik Gupta;William Taube Navaraj;Leandro Lorenzelli;Ravinder Dahiya
  • 通讯作者:
    Ravinder Dahiya
Fully degradable, transparent, and flexible photodetectors using ZnO nanowires and PEDOT:PSS based nanofibres
基于 ZnO 纳米线和 PEDOT:PSS 纳米纤维的完全可降解、透明且灵活的光电探测器
  • DOI:
    10.1038/s41528-025-00385-9
  • 发表时间:
    2025-03-10
  • 期刊:
  • 影响因子:
    15.500
  • 作者:
    Xenofon Karagiorgis;Nitheesh M. Nair;Sofia Sandhu;Abhishek Singh Dahiya;Peter J. Skabara;Ravinder Dahiya
  • 通讯作者:
    Ravinder Dahiya
Energy autonomous electronic skin
能量自主电子皮肤
  • DOI:
    10.1038/s41528-018-0045-x
  • 发表时间:
    2019-01-04
  • 期刊:
  • 影响因子:
    15.500
  • 作者:
    Carlos García Núñez;Libu Manjakkal;Ravinder Dahiya
  • 通讯作者:
    Ravinder Dahiya

Ravinder Dahiya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ravinder Dahiya', 18)}}的其他基金

EAGER: Flexible and compressible e-Skin integrated with soft magnetic coil based ultra-thin actuator and touch sensor for robotics applications
EAGER:灵活且可压缩的电子皮肤与基于软磁线圈的超薄执行器和触摸传感器集成,适用于机器人应用
  • 批准号:
    2337074
  • 财政年份:
    2023
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Standard Grant
Engineering Fellowship for Growth - Neuromorphic Printed Tactile Skin (NeuPRINTSKIN) (Ext)
成长工程奖学金 - 神经形态印刷触觉皮肤 (NeuPRINTSKIN)(扩展)
  • 批准号:
    EP/R029644/1
  • 财政年份:
    2018
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
FLEXIBLE ELECTRONIC DEVICE MODELLING
灵活的电子设备建模
  • 批准号:
    EP/M002519/1
  • 财政年份:
    2014
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Research Grant

相似海外基金

Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
  • 批准号:
    EP/M002489/3
  • 财政年份:
    2018
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
  • 批准号:
    EP/M002489/2
  • 财政年份:
    2016
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Materials by Design for Impact in Aerospace Engineering
工程奖学金促进增长:材料设计对航空航天工程的影响
  • 批准号:
    EP/M002322/2
  • 财政年份:
    2015
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships For Growth: Designing Feedback Control in Biology for Robustness and Scalability
增长工程奖学金:设计生物学中的反馈控制以实现鲁棒性和可扩展性
  • 批准号:
    EP/M002454/1
  • 财政年份:
    2015
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Systems and control engineering framework for robust and efficient synthetic biology
增长工程奖学金:用于稳健和高效合成生物学的系统和控制工程框架
  • 批准号:
    EP/M002187/1
  • 财政年份:
    2015
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Imperceptible smart coatings based on atomically thin materials
增长工程奖学金:基于原子级薄材料的难以察觉的智能涂层
  • 批准号:
    EP/M002438/1
  • 财政年份:
    2014
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Next generation of lightweight composites - how far can we go?
增长工程奖学金:下一代轻质复合材料——我们能走多远?
  • 批准号:
    EP/M002500/1
  • 财政年份:
    2014
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
  • 批准号:
    EP/M002306/1
  • 财政年份:
    2014
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
  • 批准号:
    EP/M002489/1
  • 财政年份:
    2014
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Solidification Processing of Alloys for Sustainable Manufacturing
增长工程奖学金:用于可持续制造的合金凝固加工
  • 批准号:
    EP/M002241/1
  • 财政年份:
    2014
  • 资助金额:
    $ 138.37万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了