Refining and embedding the Intersectional "MAIHDA" approach to intersectionality in quantitative social science research.
在定量社会科学研究中完善和嵌入交叉“MAIHDA”方法。
基本信息
- 批准号:ES/X011313/1
- 负责人:
- 金额:$ 90.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are big inequalities in our society, in a range of different things. Regarding health, we know that, in the UK, white people are generally more healthy than non-white people, and rich people are more healthy than poorer people. Beyond health, there are similar inequalities everywhere - in rates of unemployment, in income, in education levels, and so on.What is less well known is how these inequalities vary and interact. For instance, we know there is an ethnicity gap in health, but is that the same for men and women? Is it the same for rich women and poorer women? As we combine characteristics to produce smaller and smaller groups, it becomes clear that the inequalities in our society are complicated. And that complexity matters: it's important that we know who has worse health, so that we can target policies to the right people; it's important that we know who is being failed by our education system, so we can think about how the system could be changed to be more equitable. Fundamentally, in order to improve social justice, we need to first understand who is currently being let down by society. And that needs to be more than just a comparison of broad categories of people.The MAIHDA method is a statistical model that allows us to do this: it lets us to see which combinations of characteristics are associated with advantage, and which are associated with disadvantage. This innovative method has been incrementally developed between 2016 and 2022, and has already informed us about the nature of inequalities in a range of health outcomes.However, the method remains in its infancy, and this grant will refine the method to allow it to be used in situations that it has never been used before. This includes evaluating government policies to see which groups benefit from a particular policy, and which groups benefit less or even are harmed. The project will also allow us to consider how complex inequalities have changed over time, and how they vary from place to place. We will test our methodological refinements using real datasets which will act as exemplars in how these methods could be used going forward, relating to (among other things) obesity, covid-19, and environmental pollutants.We are also keen to expand the use of the method beyond health inequalities. As such, we will collaborate with academics and researchers in academic research centres and non-academic organisations, to implement the MAIHDA methods in other social science subject areas. This will include the analysis of carers, and how being a carer affects different groups of people in different ways. It will include an analysis of water quality in the United States, to see how different groups of people, in different places, are affected by poor-quality, polluted drinking water. And we will consider how educational inequalities vary for different groups of people, to see which groups are being let down by the education sector.Finally, a key part of this grant is training. We want to upskill researchers, in academia and beyond, to be able to use this method and our refinements to it in the future. As such we will produce a wide variety of online training materials, and run both online and in-person training courses, aimed at established academics, PhD students, and non-academic research organisations. These materials will be developed with other stakeholders to ensure that they meet the needs of those organisations and individuals.
在我们的社会中,在一系列不同的事情上,存在着巨大的不平等。在健康方面,我们知道,在英国,白人通常比非白人更健康,富人比穷人更健康。除了健康,到处都存在着类似的不平等--失业率、收入、教育水平等等。鲜为人知的是,这些不平等是如何变化和相互作用的。例如,我们知道在健康方面存在种族差距,但男性和女性的情况是否相同?富裕女性和贫穷女性的情况是一样的吗?随着我们结合特征来产生越来越小的群体,很明显,我们社会中的不平等是复杂的。这种复杂性很重要:重要的是我们要知道谁的健康状况更差,这样我们才能针对正确的人制定政策;重要的是,我们要知道我们的教育系统辜负了谁,这样我们才能思考如何才能让教育系统变得更加公平。从根本上说,为了提高社会正义,我们需要首先了解目前谁在被社会辜负。这不仅仅是对广泛类别的人的比较。MAIHDA方法是一个统计模型,允许我们这样做:它让我们看到哪些特征组合与优势相关,哪些特征与劣势相关。这一创新方法是在2016至2022年间逐步开发的,已经让我们了解了一系列健康结果中不平等的本质。然而,该方法仍处于初级阶段,这笔赠款将完善该方法,使其能够在以前从未使用过的情况下使用。这包括评估政府政策,看看哪些群体从特定政策中受益,哪些群体受益较少,甚至受到伤害。该项目还将使我们能够考虑复杂的不平等是如何随着时间的推移而变化的,以及它们如何在不同的地方发生变化。我们将使用真实的数据集测试我们的方法改进,这些数据集将成为未来如何使用这些方法的典范,这些方法与肥胖、新冠肺炎和环境污染物有关(除其他外)。我们还热衷于将该方法的使用扩展到健康不平等之外。因此,我们将与学术研究中心和非学术组织的学者和研究人员合作,在其他社会科学学科领域实施MAIHDA方法。这将包括对照顾者的分析,以及作为照顾者如何以不同的方式影响不同的人群。它将包括对美国水质的分析,以了解不同地区的不同群体如何受到劣质、受污染的饮用水的影响。我们还将考虑不同群体的教育不平等程度,看看哪些群体被教育部门辜负了。最后,这笔赠款的一个关键部分是培训。我们希望提高学术界和其他领域的研究人员的技能,以便能够使用这种方法,并在未来对其进行改进。因此,我们将制作各种各样的在线培训材料,并针对知名学者、博士生和非学术研究组织开设在线和面对面的培训课程。这些材料将与其他利益攸关方一起编制,以确保它们满足这些组织和个人的需求。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A tutorial for conducting intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA)
- DOI:10.1016/j.ssmph.2024.101664
- 发表时间:2024-04-22
- 期刊:
- 影响因子:4.7
- 作者:Evans,Clare R.;Leckie,George;Merlo,Juan
- 通讯作者:Merlo,Juan
Extending intersectional Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA) for longitudinal data, with application to mental health trajectories in the UK
扩展纵向数据的个体异质性和歧视准确性的交叉多层次分析(MAIHDA),并应用于英国的心理健康轨迹
- DOI:10.31235/osf.io/jq57s
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bell A
- 通讯作者:Bell A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Bell其他文献
Algorithmic Long-Term Unemployment Risk Assessment in Use: Counselors’ Perceptions and Use Practices
使用中的算法长期失业风险评估:咨询师的看法和使用实践
- DOI:
10.1525/gp.2020.12908 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Leid Zejnilovic;Susana Lavado;Inigo Martinez;S. Sim;Andrew Bell - 通讯作者:
Andrew Bell
Sensors, motors, and tuning in the cochlea: interacting cells could form a surface acoustic wave resonator
耳蜗中的传感器、电机和调谐:相互作用的细胞可以形成表面声波谐振器
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:3.4
- 作者:
Andrew Bell - 通讯作者:
Andrew Bell
Assessment of Magnetic Resonance Imaging Artefacts Caused by Equine Anaesthesia Equipment: A Cadaver Study
- DOI:
10.1016/j.jevs.2023.104492 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Barbara Testa;Marianna Biggi;Christian A. Byrne;Andrew Bell - 通讯作者:
Andrew Bell
Correction to: Assessing recall bias and measurement error in high-frequency social data collection for human-environment research
- DOI:
10.1007/s11111-019-00316-7 - 发表时间:
2019-02-28 - 期刊:
- 影响因子:2.500
- 作者:
Andrew Bell;Patrick Ward;Md. Ehsanul Haque Tamal;Mary Killilea - 通讯作者:
Mary Killilea
Erratum to: Opportunities for improved promotion of ecosystem services in agriculture under the Water-Energy-Food Nexus
- DOI:
10.1007/s13412-016-0420-7 - 发表时间:
2016-12-22 - 期刊:
- 影响因子:2.300
- 作者:
Andrew Bell;Nathanial Matthews;Wei Zhang - 通讯作者:
Wei Zhang
Andrew Bell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Bell', 18)}}的其他基金
Magma accumulation and inflation mechanisms at Fernandina volcano, Galapagos Islands
加拉帕戈斯群岛费尔南迪纳火山的岩浆积累和通货膨胀机制
- 批准号:
NE/X016986/1 - 财政年份:2022
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
NSFGEO-NERC: Investigating pre-, co-, and post-eruption processes at Sierra Negra volcano, Galapagos using geodetic and seismic data
NSFGEO-NERC:利用大地测量和地震数据研究加拉帕戈斯群岛内格拉火山的喷发前、同时和喷发后过程
- 批准号:
NE/W007274/1 - 财政年份:2022
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
- 批准号:
EP/R010293/1 - 财政年份:2018
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
Dynamic triggering and criticality: earthquake interactions during unrest at Sierra Negra volcano, Galapagos Islands
动态触发和临界性:加拉帕戈斯群岛内格拉火山动荡期间的地震相互作用
- 批准号:
NE/S002685/1 - 财政年份:2018
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
Final Development of a Zero Energy Dehumidification and Cooling System
零能耗除湿冷却系统的最终开发
- 批准号:
EP/P031161/1 - 财政年份:2017
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
Engineering Fellowships for Growth: Polar Materials for Additive Manufacturing
增长工程奖学金:用于增材制造的极性材料
- 批准号:
EP/M002462/1 - 财政年份:2014
- 资助金额:
$ 90.67万 - 项目类别:
Fellowship
Intelligent Multimodal Logistics Control and Brokerage Centre
智能多式联运物流控制与经纪中心
- 批准号:
TS/I000224/1 - 财政年份:2010
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
High temperature piezoelectric materials
高温压电材料
- 批准号:
EP/H005145/1 - 财政年份:2009
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
Sandpit: Mobile Energy Harvesting Systems
沙坑:移动能量收集系统
- 批准号:
EP/H020764/1 - 财政年份:2009
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
相似海外基金
Job share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
- 批准号:
NE/Y005163/1 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Standard Grant
Job Share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
- 批准号:
NE/Y005155/1 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Standard Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
- 批准号:
2335491 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Standard Grant
Creative Health Boards: A New Model for Embedding Creative Health and Community Assets in Health Systems across the UK
创意健康委员会:将创意健康和社区资产融入英国卫生系统的新模式
- 批准号:
AH/Z505377/1 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant
DEFRA Embedding Economics into the Fourth UK Climate Change Risk Assessment
DEFRA 将经济学纳入第四次英国气候变化风险评估
- 批准号:
ES/Y005236/1 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Fellowship
Towards Embedding Responsible AI in the School System: Co-Creation with Young People
将负责任的人工智能嵌入学校系统:与年轻人共同创造
- 批准号:
AH/Z505560/1 - 财政年份:2024
- 资助金额:
$ 90.67万 - 项目类别:
Research Grant