III-V Semiconductor Nanowires: Attaining Control over Doping and Heterointerfaces
III-V 族半导体纳米线:实现对掺杂和异质界面的控制
基本信息
- 批准号:EP/M017095/1
- 负责人:
- 金额:$ 80.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Semiconductor nanowires (NWs) of group III-V materials have emerged over the past decade as promising ingredients for nanoscale devices and interconnects. NWs offer great opportunities for nanoscale optoelectonic devices, including field-effect transistors, lasers, photodetectors and single-electron memory devices. In addition, NWs are ideal ingredients for next-generation solar cells as they are typically single crystal hexagonal rods of around 5nm in diameter and a few microns length, thus offering excellent conduction pathways to photo-generated charges. III-V semiconductors currently hold the efficiency records of light to electrical power conversion efficiency for conventional planar solar cells, yet they are generally only used in specialised applications such space missions and in solar concentrator arrays owing to their high production cost. The ability to make cheaper, and more efficient solar panels will change the economics in favour of photovoltaics and see a much larger proportion of electricity generation from solar cells. Nanowires are relatively cheap to produce as their growth substrates need not be single crystals and can be recycled. Furthermore the nanoscale geometry of nanowires can be easily manipulated to minimise reflective loss of incident sunlight. However, while early results on NW photovoltaics have been highly promising, these also highlighted that the application of NWs in solar cells crucially relies on electrically doping them accurately and reproducibly. Thus the inability to reliably dope nanowires has become the major obstacle to developing and exploiting any new nanowire based devices. Attaining such control is crucial as it allows directional charge flow along intended device routes. In this research programme we will attack this major obstacle using two a two-fold approach. (1) We will exploit novel techniques of modulation doping in core-shell nanowires to achieve reliable nanowire doping and surface trap passivation; and (2) We will explore alternatives to doping by developing methods to channel charge flow based on interfacial charge transfer at built-in semiconductor heterojunctions. We will tackle these aims with a broad team of experts on both nanowire growth technology and advanced spectroscopic analysis. Relatively few techniques are suitable for assessing the carrier concentration in nanowires, owing to their geometry. We will explore nanowires developed through a range of routes, using a powerful combination of spectroscopic methods based on Optical Pump Terahertz Probe spectroscopy and time- and spatially-resolved photoluminescence spectroscopy. This spectroscopic methodology benefit from being a non-contact method, i.e. the physical observables derived from the measurement are not obscured by variations in the contacts, but reflect the intrinsic properties of the nanowire ensemble. Through these cutting-edge analytical techniques we will advance both of the current leading approches to bottom-up growth of single crystal semiconductor nanowires, which are molecular beam epitaxy (MBE) and metal organic chemical vapour deposition (MOCVD). Having leading research groups on both MBE (Australian National University) and MOCVD (Ecole Polytechnique Federale de Lausanne) growth as partners on this project will allow for the first time a direct comparison of their different approaches to nanowire doping. Through this joint-up approach, we will establish general nanowire design parameters that give a crucial boost to the growth and implementation of semiconductor nanowires in nanoscale optoelectronics devices and next-generation solar cells.
III-V族材料的半导体纳米线(NW)在过去十年中已经作为纳米级器件和互连的有前途的成分而出现。纳米线为纳米光电子器件提供了巨大的机会,包括场效应晶体管、激光器、光电探测器和单电子存储器件。此外,纳米线是下一代太阳能电池的理想成分,因为它们通常是直径约为5 nm和几微米长的单晶六边形棒,从而为光生电荷提供了良好的传导路径。III-V族半导体目前保持着传统平面太阳能电池的光电转换效率的效率记录,但由于其高生产成本,它们通常仅用于诸如太空任务和太阳能集中器阵列等专门应用中。制造更便宜、更高效的太阳能电池板的能力将改变经济学,有利于光电池,并看到太阳能电池发电的更大比例。纳米线的生产相对便宜,因为它们的生长基底不需要是单晶,并且可以回收利用。此外,纳米线的纳米级几何形状可以容易地操纵,以最小化入射阳光的反射损失。然而,虽然NW光致发光的早期结果非常有希望,但这些结果也强调了NW在太阳能电池中的应用关键取决于准确和可重复地对它们进行电掺杂。因此,无法可靠地掺杂纳米线已成为开发和利用任何新的基于纳米线的器件的主要障碍。实现这样的控制是至关重要的,因为它允许定向电荷流沿着预期的设备路线。在本研究计划中,我们将使用两种双重方法来解决这一主要障碍。(1)我们将开发新的技术调制掺杂的核壳纳米线,以实现可靠的纳米线掺杂和表面陷阱钝化;(2)我们将探索替代掺杂的方法,开发的方法,沟道电荷流的基础上界面电荷转移在内置的半导体异质结。我们将与纳米线生长技术和先进光谱分析方面的广泛专家团队一起实现这些目标。由于纳米线的几何形状,相对较少的技术适用于评估纳米线中的载流子浓度。我们将探索通过一系列路线开发的纳米线,使用基于光泵太赫兹探针光谱和时间和空间分辨光致发光光谱的光谱方法的强大组合。这种光谱学方法受益于非接触方法,即从测量得到的物理可观测量不会被接触中的变化所掩盖,而是反映了纳米线系综的固有性质。通过这些尖端的分析技术,我们将推进目前领先的方法,自下而上生长单晶半导体纳米线,这是分子束外延(MBE)和金属有机化学气相沉积(MOCVD)。拥有领先的MBE(澳大利亚国立大学)和MOCVD(联邦洛桑理工学院)作为该项目的合作伙伴的研究小组,将首次允许直接比较他们对纳米线掺杂的不同方法。通过这种联合的方法,我们将建立一般的纳米线设计参数,为纳米级光电子器件和下一代太阳能电池中半导体纳米线的生长和实现提供至关重要的推动。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires.
- DOI:10.1021/acs.nanolett.8b00842
- 发表时间:2018-05
- 期刊:
- 影响因子:10.8
- 作者:J. Boland;F. Amaduzzi;S. Sterzl;H. Potts;L. Herz;A. Fontcuberta i Morral;M. Johnston
- 通讯作者:J. Boland;F. Amaduzzi;S. Sterzl;H. Potts;L. Herz;A. Fontcuberta i Morral;M. Johnston
Temperature-Dependent Refractive Index of Quartz at Terahertz Frequencies
- DOI:10.1007/s10762-018-0538-7
- 发表时间:2018-12-01
- 期刊:
- 影响因子:2.9
- 作者:Davies, Christopher L.;Patel, Jay B.;Johnston, Michael B.
- 通讯作者:Johnston, Michael B.
Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process.
三二二二二二二二二二何二二二二二二二二二酯铅的双分子重组是一个反吸收过程。
- DOI:10.1038/s41467-017-02670-2
- 发表时间:2018-01-18
- 期刊:
- 影响因子:16.6
- 作者:Davies CL;Filip MR;Patel JB;Crothers TW;Verdi C;Wright AD;Milot RL;Giustino F;Johnston MB;Herz LM
- 通讯作者:Herz LM
Investigations of doping via optical pump terahertz-probe spectroscopy
- DOI:10.1109/irmmw-thz.2017.8066895
- 发表时间:2017-08
- 期刊:
- 影响因子:0
- 作者:J. Boland;A. Casadei;G. Tütüncouglu;F. Matteini;C. Davies;F. Gaveen;F. Amaduzzi;H. Joyce;L. Herz;A. Fontcuberta i Morral;M. Johnston
- 通讯作者:J. Boland;A. Casadei;G. Tütüncouglu;F. Matteini;C. Davies;F. Gaveen;F. Amaduzzi;H. Joyce;L. Herz;A. Fontcuberta i Morral;M. Johnston
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Johnston其他文献
Evidence for an automatic code in the processing of visually novel word forms
处理视觉上新颖的单词形式的自动代码的证据
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
C. Pratt;M. McKague;Michael Johnston - 通讯作者:
Michael Johnston
Generation and evaluation of user tailored responses in multimodal dialogue
多模式对话中用户定制响应的生成和评估
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
M. Walker;S. Whittaker;Amanda Stent;Preetam Maloor;Johanna D. Moore;Michael Johnston;Gunaranjan Vasireddy - 通讯作者:
Gunaranjan Vasireddy
Towards an Approximation-Aware Computational Workflow Framework for Accelerating Large-Scale Discovery Tasks: Invited paper
迈向加速大规模发现任务的近似感知计算工作流框架:特邀论文
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Michael Johnston;V. Vassiliadis - 通讯作者:
V. Vassiliadis
Statistical modelling and analysis of NCEA and New Zealand Scholarship assessment data
NCEA和新西兰奖学金评估数据的统计建模和分析
- DOI:
10.26686/nzsr.v68.8818 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael Johnston;David Lillis - 通讯作者:
David Lillis
Corruption control in the United States: law, values, and the political foundations of reform
- DOI:
10.1177/0020852312438782 - 发表时间:
2012-06 - 期刊:
- 影响因子:2.3
- 作者:
Michael Johnston - 通讯作者:
Michael Johnston
Michael Johnston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Johnston', 18)}}的其他基金
Ultrafast Terahertz Polarimetry Enabled by Semiconductor Nanowire Sensors
半导体纳米线传感器实现超快太赫兹偏振测量
- 批准号:
EP/W018489/1 - 财政年份:2022
- 资助金额:
$ 80.34万 - 项目类别:
Research Grant
Unveiling electron motion at surfaces and interfaces on ultrashort length and ultrafast time scales
在超短长度和超快时间尺度上揭示表面和界面上的电子运动
- 批准号:
EP/T025077/1 - 财政年份:2020
- 资助金额:
$ 80.34万 - 项目类别:
Fellowship
Perovskite Heterostructures by Vapour Deposition
气相沉积钙钛矿异质结构
- 批准号:
EP/P006329/1 - 财政年份:2016
- 资助金额:
$ 80.34万 - 项目类别:
Research Grant
Terahertz Spectroscopy of Semiconductor Nanowires
半导体纳米线的太赫兹光谱
- 批准号:
EP/H016368/1 - 财政年份:2009
- 资助金额:
$ 80.34万 - 项目类别:
Research Grant
CAREER: Multimodal Language Processing for Natural Interfaces
职业:自然界面的多模态语言处理
- 批准号:
9876223 - 财政年份:1999
- 资助金额:
$ 80.34万 - 项目类别:
Continuing Grant
相似海外基金
Charge Carrier Transport Analysis in Radial and Axial Charge-Separating Junctions of III/V Semiconductor Nanowires
III/V 半导体纳米线径向和轴向电荷分离结中的载流子传输分析
- 批准号:
428769263 - 财政年份:2019
- 资助金额:
$ 80.34万 - 项目类别:
Research Grants
III-V semiconductor nanowires: correlation of local electronic structure, conductivity, and carrier lifetime
III-V族半导体纳米线:局部电子结构、电导率和载流子寿命的相关性
- 批准号:
390247238 - 财政年份:2018
- 资助金额:
$ 80.34万 - 项目类别:
Research Grants
Research in III-V Semiconductor Nanowires for the Development of Quantum Cascade Lasers
用于开发量子级联激光器的 III-V 族半导体纳米线研究
- 批准号:
444482-2013 - 财政年份:2015
- 资助金额:
$ 80.34万 - 项目类别:
Postgraduate Scholarships - Doctoral
Towards High-quality Hetero-epitaxial III-V Semiconductor Nanowires
迈向高质量异质外延 III-V 族半导体纳米线
- 批准号:
DP150100701 - 财政年份:2015
- 资助金额:
$ 80.34万 - 项目类别:
Discovery Projects
Research in III-V Semiconductor Nanowires for the Development of Quantum Cascade Lasers
用于开发量子级联激光器的 III-V 族半导体纳米线研究
- 批准号:
444482-2013 - 财政年份:2014
- 资助金额:
$ 80.34万 - 项目类别:
Postgraduate Scholarships - Doctoral
III-V semiconductor nanowires for ultrafast device applications
用于超快器件应用的 III-V 族半导体纳米线
- 批准号:
DP130101743 - 财政年份:2013
- 资助金额:
$ 80.34万 - 项目类别:
Discovery Projects
Research in III-V Semiconductor Nanowires for the Development of Quantum Cascade Lasers
用于开发量子级联激光器的 III-V 族半导体纳米线研究
- 批准号:
444482-2013 - 财政年份:2013
- 资助金额:
$ 80.34万 - 项目类别:
Postgraduate Scholarships - Doctoral
The effect of structure and size on the mechanical behaviour of III-V semiconductor nanowires
结构和尺寸对III-V族半导体纳米线力学行为的影响
- 批准号:
FT110100236 - 财政年份:2012
- 资助金额:
$ 80.34万 - 项目类别:
ARC Future Fellowships
Ternary and quaternary III-V semiconductor nanowires and related quantum structures for optoelectronics applications
用于光电子应用的三元和四元 III-V 半导体纳米线及相关量子结构
- 批准号:
DP120103439 - 财政年份:2012
- 资助金额:
$ 80.34万 - 项目类别:
Discovery Projects
Understanding the role of catalysts in the epitaxial growth of multinary III-V semiconductor nanowires and nanowire heterostructures
了解催化剂在多元 III-V 半导体纳米线和纳米线异质结构外延生长中的作用
- 批准号:
DP110100565 - 财政年份:2011
- 资助金额:
$ 80.34万 - 项目类别:
Discovery Projects