Single-Molecule Plasmoelectronics
单分子等离子体电子学
基本信息
- 批准号:EP/M029522/1
- 负责人:
- 金额:$ 56.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Continuing miniaturization of electronic components in computer chips will eventually lead to component sizes on the molecular scale. Conventional semiconductor nanostructures at these length scales will suffer from increased leakage currents due to tunnelling as well as increased thermal effects due to higher power densities. The need for developing alternative approaches has created over the last two decades the field of molecular electronics, in which electronic components are realized using single molecules. Numerous examples of prototypical devices such as diodes, memory elements and transistors employing individual molecules have been demonstrated.One of the most important functions is the control of the current through a device with an external stimulus, i.e. gating. Stimuli which have been employed include electrostatic and electrochemical potentials, temperature, and light. Light is one of the most attractive options since it potentially allows coupling single-molecular devices with future optoelectronic circuitry, holding the promise of ultimate speed and miniaturization. Efficient coupling of light with nanoscale objects can be achieved using plasmonic nanostructures that concentrate and focus light beyond the diffraction limit. In combination with electronic devices one speaks of plasmoelectronics. Such efficient and spatially confined coupling is a pre-requisite for the tight integration of optically gate-able molecular devices on the sub-100 nm scale. The proposed research aims at realizing single-molecular plasmoelectronic devices in which the current through a single molecule coupled to a plasmonic nanostructure is gated by external illumination. The envisaged device structures will take advantage of the plasmonic properties of noble metal nanoparticles that serve as the electrodes of the single-molecule junction. This research will open new opportunities for miniaturization, integration, and control of optoelectronic devices to the single-molecule level.The research is interdisciplinary spanning physics, chemistry, molecular electronics and plasmonics. This is reflected in the research team which brings together expertise in organic synthesis of single-molecular conductors (Beeby, Durham), single-molecule conduction measurements (Nichols, Higgins, Liverpool), and nanoplasmonics (Jaeckel, Liverpool). This broad expertise will allow for a systematic approach varying the chemical nature of the molecular conductor and matching it with the plasmonic properties of the single-molecule junction. This will allow detailed characterization of parameters such as spectral overlap and electronic coupling in the junction and their relation to the optical gating effect in the device. The single-molecule approach will eliminate both ensemble averaging effects which can mask important effects in macroscopic measurements and sample heterogeneity which makes interpretation of results more complex. The project will deliver a fundamental understanding of plasmoelectronic single-molecule junctions and formulate design rules for future devices. The results will also open new opportunities in related research areas such photovoltaics, organic electronics, and catalysis.
计算机芯片中电子元件的不断小型化最终将导致元件尺寸达到分子级别。这些长度尺度的传统半导体纳米结构将因隧道效应而增加漏电流,并因更高的功率密度而增加热效应。在过去的二十年中,对开发替代方法的需求催生了分子电子学领域,其中电子元件是使用单分子实现的。已经展示了许多采用单个分子的原型器件的例子,例如二极管、存储元件和晶体管。最重要的功能之一是通过外部刺激(即门控)控制通过器件的电流。所采用的刺激包括静电和电化学势、温度和光。光是最有吸引力的选择之一,因为它有可能允许将单分子器件与未来的光电电路耦合,并有望实现终极速度和小型化。使用等离子体纳米结构可以实现光与纳米级物体的有效耦合,这些纳米结构可以将光集中并聚焦到衍射极限之外。与电子设备结合起来就是等离子体电子学。这种高效且空间受限的耦合是亚 100 nm 尺度光学门控分子器件紧密集成的先决条件。拟议的研究旨在实现单分子等离子体电子器件,其中通过耦合到等离子体纳米结构的单分子的电流由外部照明控制。设想的器件结构将利用贵金属纳米颗粒的等离子体特性,作为单分子结的电极。这项研究将为光电器件的小型化、集成和单分子水平控制开辟新的机遇。这项研究是跨学科的,跨越物理、化学、分子电子学和等离子体激元学。这反映在研究团队中,该团队汇集了单分子导体有机合成(Beeby、Durham)、单分子传导测量(Nichols、Higgins、Liverpool)和纳米等离子体(Jaeckel、Liverpool)方面的专业知识。这种广泛的专业知识将允许采用系统的方法来改变分子导体的化学性质,并将其与单分子结的等离子体特性相匹配。这将允许对参数进行详细表征,例如结中的光谱重叠和电子耦合及其与器件中的光选通效应的关系。单分子方法将消除整体平均效应(它可能掩盖宏观测量中的重要效应)和样本异质性(这使得结果的解释更加复杂)。该项目将提供对等离子电子单分子结的基本了解,并制定未来设备的设计规则。研究结果还将为光伏、有机电子和催化等相关研究领域带来新的机遇。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conductance of 'bare-bones' tripodal molecular wires.
- DOI:10.1039/c8ra01257a
- 发表时间:2018-06-27
- 期刊:
- 影响因子:3.9
- 作者:Davidson, Ross J.;Milan, David C.;Al-Owaedi, Oday A.;Ismael, Ali K.;Nichols, Richard J.;Higgins, Simon J.;Lambert, Colin J.;Yufit, Dmitry S.;Beeby, Andrew
- 通讯作者:Beeby, Andrew
Building large-scale unimolecular scaffolding for electronic devices
- DOI:10.1016/j.mtchem.2022.101067
- 发表时间:2022-08-02
- 期刊:
- 影响因子:7.3
- 作者:Escorihuela, E.;Concellon, A.;Martin, S.
- 通讯作者:Martin, S.
Low variability of single-molecule conductance assisted by bulky metal-molecule contacts
大体积金属分子接触辅助单分子电导的低变异性
- DOI:10.1039/c6ra15477h
- 发表时间:2016
- 期刊:
- 影响因子:3.9
- 作者:Ferradás R
- 通讯作者:Ferradás R
Towards the design of effective multipodal contacts for use in the construction of Langmuir-Blodgett films and molecular junctions
- DOI:10.1039/c9tc04710g
- 发表时间:2020-01-14
- 期刊:
- 影响因子:6.4
- 作者:Escorihuela, Enrique;Cea, Pilar;Martin, Santiago
- 通讯作者:Martin, Santiago
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Nichols其他文献
Low dose E. coli enterotoxin for urease-based oral immunization against H. pylori in healthy volunteers: Can it be safe and effective
- DOI:
10.1016/s0016-5085(00)82765-1 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:
- 作者:
Subhas Banerjee;Anila Medina-Fatimi;Richard Nichols;David Tendler;Murielle Michetti;Marion Mach;Joseph Simon;Ciaran P. Kelly;Thomas P. Monath;Pierre Michetti - 通讯作者:
Pierre Michetti
Radiation Belt Storm Probes—Observatory and Environments
- DOI:
10.1007/s11214-012-9949-2 - 发表时间:
2012-12-14 - 期刊:
- 影响因子:7.400
- 作者:
Karen Kirby;David Artis;Stewart Bushman;Michael Butler;Rich Conde;Stan Cooper;Kristen Fretz;Carl Herrmann;Adrian Hill;Jeff Kelley;Richard Maurer;Richard Nichols;Geffrey Ottman;Mark Reid;Gabe Rogers;Dipak Srinivasan;John Troll;Bruce Williams - 通讯作者:
Bruce Williams
Richard Nichols的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Nichols', 18)}}的其他基金
Supramolecular Nanorings for Exploring Quantum Interference
用于探索量子干涉的超分子纳米环
- 批准号:
EP/M014169/1 - 财政年份:2015
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
Identifying the genetic mechanisms facilitating host range and virulence of a viral pathogen that threatens European amphibian biodiversity
确定威胁欧洲两栖动物生物多样性的病毒病原体的宿主范围和毒力的遗传机制
- 批准号:
NE/M00080X/1 - 财政年份:2015
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
Single-molecule photo-spintronics
单分子光自旋电子学
- 批准号:
EP/M005046/1 - 财政年份:2014
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
Electrochemically Gated Single Molecule FETs
电化学门控单分子 FET
- 批准号:
EP/K007785/1 - 财政年份:2013
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
In-situ Electrochemical Fabrication of Single Molecule Spintronic Junctions
单分子自旋电子结的原位电化学制造
- 批准号:
EP/H001980/1 - 财政年份:2010
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
Porphyrin single molecule wires for nanoelectronics
用于纳米电子学的卟啉单分子线
- 批准号:
EP/D07665X/1 - 财政年份:2006
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
相似国自然基金
D-A类共轭聚合物晶界内部tie molecule构象调控
- 批准号:51573185
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
耦合可积系统及其molecule解的研究
- 批准号:11026119
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
- 批准号:
EP/X031934/1 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Development of single-protein-molecule isotropic microscopy
单蛋白质分子各向同性显微镜的发展
- 批准号:
24K18359 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
- 批准号:
ES/Y010655/1 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
- 批准号:
BB/Y001567/1 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
- 批准号:
LE240100086 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Electron electric dipole moment search by using polarized ultracold molecule s
利用极化超冷分子进行电子电偶极矩搜索
- 批准号:
23K20858 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
- 批准号:
BB/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant
FLP Zintl Clusters for Small Molecule Activation and Catalysis
用于小分子活化和催化的 FLP Zintl 簇
- 批准号:
EP/V012061/2 - 财政年份:2024
- 资助金额:
$ 56.67万 - 项目类别:
Research Grant