Porphyrin single molecule wires for nanoelectronics
用于纳米电子学的卟啉单分子线
基本信息
- 批准号:EP/D07665X/1
- 负责人:
- 金额:$ 22.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The prime aspiration of molecular nanoelectronics is to fabricate and interconnect molecules that can replace, or at least augment, present silicon based technology, with the molecules functioning as interconnects, switches, transistors or even logic gates. Clearly big challenges exist if such technologies are ever to reach fruition. In this respect, one of the key scientific challenges is to synthesise and reliably connect single molecular wires which can transport charge over long distance and also perform other functions such as rectifying current or storing charge. This proposal is aimed at synthesising extended molecular wires from a class of molecules called porphyrins, whose synthesis and functionalisation is the focus of the Oxford group. These electrical properties of these well-characterised molecules will be investigated at Cardiff and Liverpool, particularly their efficiency as molecular wires, their contacts with metal electrodes and their potential for electrochemical control in devices. The porphyrin wires to be synthesised are conjugated, stiff and contain sites where charge can be localised. Other key attributes include lengths greater than 10 nm, remarkable stability, their ability to bind a wide range of metal ions and their capacity to be tuned with electrochemistry or photochemistry. It is expected that their attributes will allow them to conduct electrons over long distances. Their redox activity and ability to support pendent molecular groups will in turn provide avenues for current rectification, switching or charge storage. The investigations of the electrical properties of these porphyrin wires will require us to wire-up single molecules. This is clearly a big experimental challenge but the Liverpool group has recently developed new techniques using the scanning tunnelling microscope which makes this procedure more straightforward and reliable. These techniques will provide robust chemical contact of the single porphyrin molecules at both ends to metallic contacts. The role of the molecule/metal contact remains one of the most poorly understood and yet extremely important aspects of single molecule electronics. We will systematically investigate these contact effects through the use of several differing chemical groups for binding to the metal electrodes and complementary determination of the lineup of energy levels between the metal and the molecule. Although most of the electrical characterisation will be performed with two metal contacts at either end of the wire, in the later stages of the project a scanning probe contact will be introduced which can be scanned along the length of the wire probing electrical properties along the wire. The final goals of the project are to produce a series of novel porphyrin molecular wires and to have defined and understood electron transport across them down to the single molecule level and in different environments including UHV and electrolyte. Being able to probe the key variables (temperature, environment, oxidation state, metal atom, molecule stiffness, contact chemistry) for one molecular system will provide a systematic approach for formulating detailed mechanisms. In particular, the limiting roles of contact chemistries and non-ideal charge transport (inelastic scattering) processes will be defined. The ideal porphyrin molecular wire would support high currents and we will assess how closely this goal (quantum conductance limit) can be approached. We will also have evaluated the ability of these molecules to act as active molecular wires through the placement of redox addressable groups along their length.
分子纳米电子学的主要愿望是制造和互连分子,这些分子可以取代或至少增强目前的硅基技术,分子用作互连,开关,晶体管甚至逻辑门。显然,如果这些技术要取得成果,还存在巨大的挑战。在这方面,关键的科学挑战之一是合成和可靠地连接单分子线,这些单分子线可以长距离传输电荷,还可以执行其他功能,如整流电流或存储电荷。该提案旨在从一类称为卟啉的分子中合成扩展的分子导线,其合成和功能化是牛津小组的重点。这些良好表征的分子的这些电特性将在卡迪夫和利物浦进行研究,特别是它们作为分子导线的效率,它们与金属电极的接触以及它们在设备中进行电化学控制的潜力。要合成的卟啉线是共轭的,刚性的,并且含有电荷可以被定位的位点。其他关键属性包括大于10 nm的长度,显着的稳定性,它们结合各种金属离子的能力以及它们通过电化学或光化学调节的能力。预计它们的属性将使它们能够长距离传导电子。它们的氧化还原活性和支持侧链分子基团的能力将反过来为电流整流、开关或电荷存储提供途径。这些卟啉线的电学性质的研究将需要我们将单个分子连接起来。这显然是一个巨大的实验挑战,但利物浦小组最近开发了使用扫描隧道显微镜的新技术,使这一过程更加简单可靠。这些技术将提供单个卟啉分子在两端与金属接触的稳固的化学接触。分子/金属接触的作用仍然是单分子电子学中最不为人所知但又极其重要的方面之一。我们将通过使用几种不同的化学基团与金属电极结合,并补充确定金属和分子之间的能级序列,系统地研究这些接触效应。虽然大多数电气特性将通过导线两端的两个金属触点来执行,但在项目的后期阶段,将引入扫描探针触点,该扫描探针触点可以沿着导线的长度进行扫描,从而沿沿着导线探测电气特性。该项目的最终目标是生产一系列新型卟啉分子线,并定义和理解它们之间的电子传输,直到单分子水平,以及在不同的环境中,包括超高真空和电解质。能够探测一个分子系统的关键变量(温度、环境、氧化态、金属原子、分子刚度、接触化学)将为制定详细的机制提供系统的方法。特别是,接触化学和非理想的电荷传输(非弹性散射)过程的限制作用将被定义。理想的卟啉分子线将支持高电流,我们将评估如何接近这个目标(量子电导极限)。我们还将评估这些分子通过沿着其长度放置氧化还原可寻址基团作为活性分子线的能力。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ionic Liquids As a Medium for STM-Based Single Molecule Conductance Determination: An Exploration Employing Alkanedithiols
- DOI:10.1021/jp206241d
- 发表时间:2011-09
- 期刊:
- 影响因子:3.7
- 作者:Nicola J. Kay;R. Nichols;S. Higgins;W. Haiss;Gita Sedghi;W. Schwarzacher;B. Mao
- 通讯作者:Nicola J. Kay;R. Nichols;S. Higgins;W. Haiss;Gita Sedghi;W. Schwarzacher;B. Mao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Nichols其他文献
Low dose E. coli enterotoxin for urease-based oral immunization against H. pylori in healthy volunteers: Can it be safe and effective
- DOI:
10.1016/s0016-5085(00)82765-1 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:
- 作者:
Subhas Banerjee;Anila Medina-Fatimi;Richard Nichols;David Tendler;Murielle Michetti;Marion Mach;Joseph Simon;Ciaran P. Kelly;Thomas P. Monath;Pierre Michetti - 通讯作者:
Pierre Michetti
Radiation Belt Storm Probes—Observatory and Environments
- DOI:
10.1007/s11214-012-9949-2 - 发表时间:
2012-12-14 - 期刊:
- 影响因子:7.400
- 作者:
Karen Kirby;David Artis;Stewart Bushman;Michael Butler;Rich Conde;Stan Cooper;Kristen Fretz;Carl Herrmann;Adrian Hill;Jeff Kelley;Richard Maurer;Richard Nichols;Geffrey Ottman;Mark Reid;Gabe Rogers;Dipak Srinivasan;John Troll;Bruce Williams - 通讯作者:
Bruce Williams
Richard Nichols的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Nichols', 18)}}的其他基金
Single-Molecule Plasmoelectronics
单分子等离子体电子学
- 批准号:
EP/M029522/1 - 财政年份:2016
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
Supramolecular Nanorings for Exploring Quantum Interference
用于探索量子干涉的超分子纳米环
- 批准号:
EP/M014169/1 - 财政年份:2015
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
Identifying the genetic mechanisms facilitating host range and virulence of a viral pathogen that threatens European amphibian biodiversity
确定威胁欧洲两栖动物生物多样性的病毒病原体的宿主范围和毒力的遗传机制
- 批准号:
NE/M00080X/1 - 财政年份:2015
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
Single-molecule photo-spintronics
单分子光自旋电子学
- 批准号:
EP/M005046/1 - 财政年份:2014
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
Electrochemically Gated Single Molecule FETs
电化学门控单分子 FET
- 批准号:
EP/K007785/1 - 财政年份:2013
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
In-situ Electrochemical Fabrication of Single Molecule Spintronic Junctions
单分子自旋电子结的原位电化学制造
- 批准号:
EP/H001980/1 - 财政年份:2010
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
相似国自然基金
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
活细胞单分子成像定量研究EGFR内吞途径命运选择
- 批准号:32000557
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
- 批准号:21306143
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
全基因组micro-RNA种子区结合序列SNP标志体系与乳腺癌发病风险的关联及相关功能研究
- 批准号:81172762
- 批准年份:2011
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
- 批准号:
EP/X031934/1 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
- 批准号:
LE240100086 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
- 批准号:
ES/Y010655/1 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
Development of single-protein-molecule isotropic microscopy
单蛋白质分子各向同性显微镜的发展
- 批准号:
24K18359 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
- 批准号:
BB/Y001567/1 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
- 批准号:
BB/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
- 批准号:
2339595 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
2350466 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
- 批准号:
BB/X007294/1 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant