Motion Corrected Reconstruction for 3D Cardiac Simultaneous PET-MR Imaging: Towards Efficient Assessment of Coronary Artery Disease

3D 心脏同步 PET-MR 成像的运动校正重建:实现冠状动脉疾病的有效评估

基本信息

  • 批准号:
    EP/N009258/1
  • 负责人:
  • 金额:
    $ 77.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Coronary artery disease (CAD) is the leading single cause of morbidity and mortality in the Western world. CAD reduces the blood supply to the cardiac muscle and can lead to chest pain (angina) or heart attack. CAD diagnosis is currently performed by a wide range of invasive and non-invasive tests. However in current practice a non-negligible number of patients that may not need the intervention are referred to invasive, ionizing, and potentially harmful x-ray cardiac catheterization procedures. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are two very promising non-invasive imaging technologies for early risk assessment, guidance of therapy and treatment monitoring of CAD. Both technologies provide complementary information, thus the recent introduction of simultaneous PET-MR systems offers great potential for accurate interpretation of findings of PET and MR images and new perspectives for better CAD diagnosis and treatment. For example three-dimensional fusion of PET perfusion images with non-invasive coronary MR images may allow the exact localization of stenosis, causing ischemia, to guide required interventions. However, inevitable patient motion (such as that caused by breathing and heart beating) during the acquisition degrades the image quality of both PET and MR images. Currently, commercial simultaneous PET-MR scanners do not feature technology for efficient and accurate correction of such motion. Current research developments that deal with the motion problem in cardiovascular PET-MR concentrate mainly on improving the quality of PET images based on MR information. Moreover these approaches do not allow truly simultaneous PET and MR acquisitions leading to prolonged scan times, since diagnostic MR images need to be acquired after the simultaneous PET-MR acquisition. The reason is that dedicated MR acquisitions need to be performed concurrently with the PET imaging in order to correct for motion in the PET data. This means that MR is being used as an expensive motion-correction device limiting its diagnostic utility. In this proposal we aim to develop, implement and test the clinical feasibility of an efficient PET-MR acquisition and reconstruction framework that enables truly simultaneous acquisition of complementary PET and MR diagnostic information. We hypothesize that this can be achieved using synergistic information of both modalities i.e. functional, anatomic and motion MR information, and quantitative perfusion PET data in a motion corrected reconstruction approach. The proposed approach is foreseen as an important step towards clinical adoption of PET-MR cardiovascular imaging and lastly towards an efficient and accurate non-invasive assessment of CAD.
冠状动脉疾病(CAD)是西方世界发病率和死亡率的主要单一原因。CAD减少了心肌的血液供应,并可能导致胸痛(心绞痛)或心脏病发作。CAD诊断目前通过广泛的侵入性和非侵入性测试进行。然而,在目前的实践中,可能不需要干预的不可忽略数量的患者被称为侵入性、电离和潜在有害的X射线心脏导管插入术。磁共振成像(MRI)和正电子发射断层扫描(PET)是两种非常有前途的非侵入性成像技术,用于CAD的早期风险评估、治疗指导和治疗监测。这两种技术提供了互补的信息,因此,最近推出的同步PET-MR系统提供了很大的潜力,准确解释的结果PET和MR图像和新的观点,更好的CAD诊断和治疗。例如,PET灌注图像与非侵入性冠状动脉MR图像的三维融合可以允许引起缺血的狭窄的精确定位,以指导所需的介入。然而,在采集期间不可避免的患者运动(诸如由呼吸和心跳引起的运动)降低PET和MR图像两者的图像质量。目前,商业同步PET-MR扫描仪没有用于有效和准确校正这种运动的技术。目前,针对心血管PET-MR中运动问题的研究主要集中在基于MR信息提高PET图像质量上。此外,这些方法不允许真正同时的PET和MR采集,从而导致延长的扫描时间,因为诊断MR图像需要在同时的PET-MR采集之后被采集。原因在于,需要与PET成像同时执行专用MR采集,以便校正PET数据中的运动。这意味着MR被用作昂贵的运动校正设备,限制了其诊断实用性。在本提案中,我们的目标是开发、实施和测试高效PET-MR采集和重建框架的临床可行性,该框架能够真正同时采集互补的PET和MR诊断信息。我们假设这可以通过使用两种模态的协同信息(即功能、解剖和运动MR信息)以及运动校正重建方法中的定量灌注PET数据来实现。所提出的方法被认为是临床采用PET-MR心血管成像的重要一步,最终实现CAD的有效和准确的非侵入性评估。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimized respiratory-resolved motion-compensated 3D Cartesian coronary MR angiography.
  • DOI:
    10.1002/mrm.27208
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Correia T;Ginami G;Cruz G;Neji R;Rashid I;Botnar RM;Prieto C
  • 通讯作者:
    Prieto C
3D-Patch-Based Low-Rank Reconstruction (PROST) for Highly-Accelerated CMRA Acquisition
用于高加速 CMRA 采集的基于 3D 补丁的低阶重建 (PROST)
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bustin A
  • 通讯作者:
    Bustin A
Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction.
  • DOI:
    10.1002/mrm.27354
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Bustin A;Ginami G;Cruz G;Correia T;Ismail TF;Rashid I;Neji R;Botnar RM;Prieto C
  • 通讯作者:
    Prieto C
Imaging of the Cardiovascular System, Thorax, and Abdomen
心血管系统、胸部和腹部成像
  • DOI:
    10.1201/b19675-2
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chiribiri A
  • 通讯作者:
    Chiribiri A
Four-Minute Whole-Heart Coronary MRA with Sub-Millimeter Isotropic Resolution and 100% Respiratory Scan Efficiency
四分钟%20全心%20冠状动脉%20MRA%20和%20亚毫米%20各向同性%20分辨率%20和%20100%%20呼吸%20扫描%20效率
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bustin A
  • 通讯作者:
    Bustin A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claudia Prieto其他文献

The Role of Catchment Areas on School Segregation by Economic, Social and Cultural Characteristics
按经济、社会和文化特征划分的流域对学校隔离的作用
  • DOI:
    10.1007/s11205-021-02728-1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Claudia Prieto;Ó. Marcenaro;L. López
  • 通讯作者:
    L. López
Socioeconomic school segregation in Canary Islands
加那利群岛的社会经济学校隔离
  • DOI:
    10.1080/13504851.2021.1929820
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Claudia Prieto;Ó. Marcenaro
  • 通讯作者:
    Ó. Marcenaro
The Power of Expectations on Students’ Years of Schooling
对学生受教育年限的期望的力量
Motion Corrected 3D Whole-Heart Vessel Wall Imaging
  • DOI:
    10.1186/1532-429x-18-s1-p323
  • 发表时间:
    2016-01-27
  • 期刊:
  • 影响因子:
  • 作者:
    Gastao J Lima da Cruz;David Atkinson;Markus Henningsson;Rene M Botnar;Claudia Prieto
  • 通讯作者:
    Claudia Prieto
Kiosk 7R-TB-08 - Molecular MRI of Cardiac Fibrosis Monitors Response to Treatment After Myocardial Infarction
自助服务终端 7R-TB-08 - 心肌纤维化的分子磁共振成像监测心肌梗死后的治疗反应
  • DOI:
    10.1016/j.jocmr.2024.100839
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Konstantina Amoiradaki;Mateusz Tomczyk;Xiaoying Wang;Gastao Lima Da Cruz;Carlos Velasco;Lorena Zentilin;Francesca Bortolotti;Claudia Prieto;René Botnar;Mauro Giacca;Alkystis Phinikaridou
  • 通讯作者:
    Alkystis Phinikaridou

Claudia Prieto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claudia Prieto', 18)}}的其他基金

Contrast-free Deep Myocardial Tissue Characterization with Cardiac MR Fingerprinting
使用心脏 MR 指纹识别进行无对比深层心肌组织表征
  • 批准号:
    EP/V044087/1
  • 财政年份:
    2021
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Research Grant
Multidimensional and Multiparametric Quantitative Cardiac MRI from Continuous Free-Breathing Acquisition
连续自由呼吸采集的多维和多参数定量心脏 MRI
  • 批准号:
    EP/P032311/1
  • 财政年份:
    2017
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Research Grant
3D Free-breathing MRI with High Scan Efficiency for Assessment of Cardiovascular Disease: Combining Acceleration and Motion Correction Techniques
用于评估心血管疾病的高扫描效率 3D 自由呼吸 MRI:结合加速和运动校正技术
  • 批准号:
    MR/L009676/1
  • 财政年份:
    2014
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Research Grant
Towards Reliable Diffusion MRI of Moving Organs
实现移动器官的可靠扩散 MRI
  • 批准号:
    EP/I018808/1
  • 财政年份:
    2011
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Research Grant

相似海外基金

Equipment: MRI: Track 2 Acquisition of an Analytical Aberration-Corrected Transmission Electron Microscope for Research and Education
设备: MRI:轨道 2 获取用于研究和教育的分析像差校正透射电子显微镜
  • 批准号:
    2320468
  • 财政年份:
    2023
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Standard Grant
300kV Cs-corrected transmission electron microscope
300kV CS校正透射电子显微镜
  • 批准号:
    466823680
  • 财政年份:
    2022
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Major Research Instrumentation
Developing an error corrected quantum processor solution for commercial quantum computing
开发用于商业量子计算的纠错量子处理器解决方案
  • 批准号:
    10004857
  • 财政年份:
    2022
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Collaborative R&D
NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
  • 批准号:
    2200914
  • 财政年份:
    2022
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Continuing Grant
Corrected Registry Entries and the Diagnosis of Sex at Birth
更正的登记条目和出生时性别的诊断
  • 批准号:
    2760491
  • 财政年份:
    2022
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Studentship
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
  • 批准号:
    2246394
  • 财政年份:
    2022
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Continuing Grant
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
  • 批准号:
    10432272
  • 财政年份:
    2022
  • 资助金额:
    $ 77.56万
  • 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
  • 批准号:
    10831651
  • 财政年份:
    2022
  • 资助金额:
    $ 77.56万
  • 项目类别:
An Aberration Corrected STEM with Integrated Science Driven AI to Quantify Dynamic Functionality in Advanced Energy Technologies and Biomaterials
利用综合科学驱动的 AI 进行像差校正 STEM,以量化先进能源技术和生物材料的动态功能
  • 批准号:
    EP/V05385X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 77.56万
  • 项目类别:
    Research Grant
Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
  • 批准号:
    10634894
  • 财政年份:
    2021
  • 资助金额:
    $ 77.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了