Uncertainty Quantification and Management in Ambient Modal Identification
环境模态识别中的不确定性量化和管理
基本信息
- 批准号:EP/N017897/1
- 负责人:
- 金额:$ 72.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The modal properties of a structure include primarily its natural frequencies, damping ratios and mode shapes. Their information is indispensable for design against dynamic loads such as wind, earthquake and human excitation. Uncertainty arises due to the lack of knowledge and modelling limitations and this generally increases project risk. Modal identification has long been recognised as an effective means for uncertainty mitigation in structural dynamics. Theoretically it is possible to identify the modal properties based on only the 'output' vibration response of structures without knowing the 'input' excitation. This type of test, called 'ambient vibration test', has now become the primary and most sustainable means for its high implementation feasibility, robustness and economy. In the absence of loading information and with data collected under uncontrolled field environment, however, the identification results have significant variability and low repeatability. This has limited the economic benefit of ambient vibration tests and undermined the scientific significance of their identification results. This has been well-recognised but there has been no quantitative account for its origin or how to control it.This project aims at developing a comprehensive fundamental methodology for quantifying and managing the uncertainties of the modal properties of civil engineering structures identified from ambient vibration data. At the scientific core is a set of 'uncertainty laws', analogous to the laws of large numbers of data in classical probability, that expresses fundamentally the identification uncertainty of modal properties explicitly and quantitatively in terms of test configurations such as measurement noise, environmental load intensity and the number and location of sensors. Due to complexity of the problem, it is unlikely to obtain insightful results for general situations. The project aims at fundamental expressions with insights governing the dominant behaviour of the remaining identification uncertainty under realistic situations. The project objective is achieved through a comprehensive programme comprising fundamental theory development, extensive verification with synthetic, laboratory and field data, and knowledge transfer with industry. A practical guide for planning and performing ambient vibration test shall be produced incorporating scientific findings of the project and experience of the team members with input from industry partners.
结构的模态特性主要包括其固有频率、阻尼比和振型。它们的信息对于设计抵抗风、地震和人体激励等动态载荷是不可或缺的。不确定性是由于缺乏知识和建模的局限性而产生的,这通常会增加项目风险。模态识别一直被认为是结构动力学中消除不确定性的有效手段。从理论上讲,在不知道结构的“输入”激励的情况下,仅根据结构的“输出”振动响应来识别结构的模态特性是可能的。这种类型的测试,称为“环境振动测试”,现已成为主要的和最可持续的手段,其高实施的可行性,鲁棒性和经济性。然而,在缺乏载荷信息和在不受控的现场环境下收集数据的情况下,识别结果具有显著的可变性和低重复性。这不仅限制了环境振动试验的经济效益,而且削弱了环境振动试验识别结果的科学意义。这已经得到了很好的认可,但一直没有定量的帐户,其起源或如何控制it.This项目的目的是开发一个全面的基本方法,量化和管理的不确定性的土木工程结构的模态特性,从环境振动数据。在科学的核心是一组“不确定性定律”,类似于经典概率中大量数据的定律,它从根本上明确和定量地表达了模态特性的识别不确定性,如测量噪声,环境载荷强度和传感器的数量和位置。由于问题的复杂性,不太可能在一般情况下获得有见地的结果。该项目的目的是在基本表达式的见解支配的主要行为,在现实情况下,其余的识别不确定性。该项目的目标是通过一个全面的计划来实现的,该计划包括基础理论的发展,合成,实验室和现场数据的广泛验证,以及与工业界的知识转移。应编制一份规划和执行环境振动试验的实用指南,该指南应结合项目的科学发现和团队成员的经验以及行业合作伙伴的投入。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Model validity and frequency band selection in operational modal analysis
- DOI:10.1016/j.ymssp.2016.03.025
- 发表时间:2016-12
- 期刊:
- 影响因子:8.4
- 作者:S. Au
- 通讯作者:S. Au
Pole placement in uncertain dynamic systems by variance minimisation
- DOI:10.1016/j.ymssp.2019.03.007
- 发表时间:2019-07
- 期刊:
- 影响因子:8.4
- 作者:Liam J. Adamson;S. Fichera;Bilal Mokrani;J. Mottershead
- 通讯作者:Liam J. Adamson;S. Fichera;Bilal Mokrani;J. Mottershead
Asymptotic identification uncertainty of close modes in Bayesian operational modal analysis
- DOI:10.1016/j.ymssp.2019.106273
- 发表时间:2019-11-01
- 期刊:
- 影响因子:8.4
- 作者:Au, Siu-Kui;Brownjohn, James M. W.
- 通讯作者:Brownjohn, James M. W.
Calculation of Hessian under constraints with applications to Bayesian system identification
- DOI:10.1016/j.cma.2017.05.021
- 发表时间:2017-08
- 期刊:
- 影响因子:7.2
- 作者:S. Au;Yan-Long Xie
- 通讯作者:S. Au;Yan-Long Xie
Receptance-based robust eigenstructure assignment
- DOI:10.1016/j.ymssp.2020.106697
- 发表时间:2020-06
- 期刊:
- 影响因子:8.4
- 作者:Liam J. Adamson;S. Fichera;J. Mottershead
- 通讯作者:Liam J. Adamson;S. Fichera;J. Mottershead
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Mottershead其他文献
Societal Versus Healthcare Perspectives on the Cost Effectiveness of Ocrelizumab for Treatment of Primary Progressive Multiple Sclerosis in Aotearoa New Zealand
- DOI:
10.1007/s40273-025-01486-z - 发表时间:
2025-05-07 - 期刊:
- 影响因子:4.600
- 作者:
Richard J. Milne;Carsten Schousboe;Julie A. Campbell;John Mottershead - 通讯作者:
John Mottershead
Data-driven stochastic model updating and damage detection with deep generative model
基于数据驱动的随机模型更新以及利用深度生成模型进行损伤检测
- DOI:
10.1016/j.ymssp.2025.112743 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:8.900
- 作者:
Tairan Wang;Sifeng Bi;Yanlin Zhao;Laurent Dinh;John Mottershead - 通讯作者:
John Mottershead
Stochastic Model Updating with Uncertainty Quantification: An Overview and Tutorial
不确定性量化的随机模型更新:概述和教程
- DOI:
10.1016/j.ymssp.2023.110784 - 发表时间:
2023 - 期刊:
- 影响因子:8.4
- 作者:
S. Bi;Michael Beer;Scott Cogan;John Mottershead - 通讯作者:
John Mottershead
John Mottershead的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Mottershead', 18)}}的其他基金
Nonlinear Active Vibration Suppression in Aeroelasticity
气动弹性中的非线性主动振动抑制
- 批准号:
EP/J004987/1 - 财政年份:2012
- 资助金额:
$ 72.35万 - 项目类别:
Research Grant
A New Approach to Active Vibration Suppression
主动抑制振动的新方法
- 批准号:
EP/F008724/1 - 财政年份:2007
- 资助金额:
$ 72.35万 - 项目类别:
Research Grant
相似国自然基金
相似海外基金
Natural Flood Management : Quantification and Modelling
自然洪水管理:量化和建模
- 批准号:
2883389 - 财政年份:2023
- 资助金额:
$ 72.35万 - 项目类别:
Studentship
ERI: An Integrative Risk Quantification and Management Framework to Enhance the Resiliency of Surface Transportation Systems Under Disruptive Precipitation
ERI:综合风险量化和管理框架,以增强地面交通系统在破坏性降水下的弹性
- 批准号:
2138549 - 财政年份:2022
- 资助金额:
$ 72.35万 - 项目类别:
Standard Grant
Resilience Quantification and Risk Management of Water Resources Systems
水资源系统的弹性量化和风险管理
- 批准号:
RGPIN-2017-04695 - 财政年份:2022
- 资助金额:
$ 72.35万 - 项目类别:
Discovery Grants Program - Individual
Resilience Quantification and Risk Management of Water Resources Systems
水资源系统的弹性量化和风险管理
- 批准号:
RGPIN-2017-04695 - 财政年份:2021
- 资助金额:
$ 72.35万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
- 批准号:
2012298 - 财政年份:2020
- 资助金额:
$ 72.35万 - 项目类别:
Standard Grant
Resilience Quantification and Risk Management of Water Resources Systems
水资源系统的弹性量化和风险管理
- 批准号:
RGPIN-2017-04695 - 财政年份:2020
- 资助金额:
$ 72.35万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
- 批准号:
2012448 - 财政年份:2020
- 资助金额:
$ 72.35万 - 项目类别:
Standard Grant
The Detection, Quantification, and Management of Ventilator Dyssynchrony
呼吸机不同步的检测、量化和管理
- 批准号:
10080102 - 财政年份:2019
- 资助金额:
$ 72.35万 - 项目类别:
Resilience Quantification and Risk Management of Water Resources Systems
水资源系统的弹性量化和风险管理
- 批准号:
RGPIN-2017-04695 - 财政年份:2019
- 资助金额:
$ 72.35万 - 项目类别:
Discovery Grants Program - Individual
The Detection, Quantification, and Management of Ventilator Dyssynchrony
呼吸机不同步的检测、量化和管理
- 批准号:
10545038 - 财政年份:2019
- 资助金额:
$ 72.35万 - 项目类别: