Investigating pressure induced conductive states on the nanoscale : A novel route to nano-circuitry

研究纳米级压力感应导电态:纳米电路的新途径

基本信息

  • 批准号:
    EP/N018389/1
  • 负责人:
  • 金额:
    $ 12.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The ability to transfer nanometer scale metallic patterns at low cost, high throughput and high resolution has huge implications for slashing the manufacturing costs of semiconductors and data storage devices. Techniques like nanoimprint lithography allow fabrication of such nanometer scale patterns by mechanical deformation of imprint resist and subsequent processes. Even though the technique is considered one of the simplest lithography approaches, it still comprises of several complicated steps during pattern transfer. If the transfer step could be eliminated and only the imprint step could directly result in the printing of a few nanometer sharp circuit pattern on the chosen material, that would represent a dramatic leap in terms of throughput and reproducibility of patterns for nano-circuitry. In order to achieve this visionary goal of directly imprinting circuitry, it is necessary as a first step to understand the physical phenomena in materials that would allow localised pressure to be used as a tool to sketch and control sharp conductive channels in an otherwise insulating material. There are atleast two different mechanisms that could give rise to local pressure induced conductive states in an insulating material. Ferroelectrics with conducting domain walls and materials undergoing metal-insulator phase transitions are the two primary material systems where nanoscale pressure can be used to realise confined conducting states in the material and potentially achieve deterministic control of such interfaces. Both systems allow co-existence of conducting walls or phases in the bulk but the mechanisms through which localised stress results in the formation of conductive interfaces or channels in these materials remains to be well understood before the effect itself can be fully exploited. For potential applications, it is also necessary to evaluate the ease of channel formation under pressure, their stability and reconfigurability. To address these issues, the primary goal of this proposal is to establish the pressure mediated control of localised nanoscale conductive states and develop a fundamental understanding of the physics associated with this behaviour so that reliable control of conductive interfaces can be achieved as a first step towards nano-circuitry. Pressure applied via an atomic force microscope (AFM) tip will be used to inject conductive states in three different materials : an improper ferroelectric, a mixed phase ferroelectric and a material undergoing metal-insulator phase transition, each representing a unique type of conductive interface created through pressure induced writing. In each of the three cases, the achievable degree of control of tip pressure induced conductive walls/phases will be evaluated and experiments will be performed to identify the physical origin and the mechanisms underlying the conductivity of the created interfaces. With a grasp on the mechanism of pressure induced conductivity in these materials, we aim to be able to precisely control the formation and annihilation of these confined walls or phases. The complementarity of pressure mediated control of conductive behaviour with other stimuli will be evaluated for optimal reconfigurability of conductive channels and read/erase capability. Proof-of-concept demonstration of pressure induced conductive channels between lateral electrodes will be performed. The AFM based approach developed here would thus help establish the underpinning physics of pressure induced conductive states in the discussed material systems and provide key insight for developing other nanoimprint methods for direct writing of nano-circuitry.
以低成本、高吞吐量和高分辨率传输纳米级金属图案的能力对大幅削减半导体和数据存储设备的制造成本具有巨大的影响。像纳米压印光刻这样的技术允许通过压印抗蚀剂的机械变形和后续工艺来制造这样的纳米级图案。尽管这项技术被认为是最简单的光刻方法之一,但在图案转移过程中,它仍然包括几个复杂的步骤。如果可以省去转移步骤,并且只有压印步骤可以直接导致在所选材料上印刷几纳米锐利的电路图案,那么就纳米电路的图案的产量和重复性而言,这将是一个巨大的飞跃。为了实现直接压印电路的这一理想目标,有必要首先了解材料中的物理现象,这种物理现象将允许局部压力用作工具来绘制和控制其他绝缘材料中的尖锐导电通道。至少有两种不同的机制可以在绝缘材料中引起局部压力感应导电态。具有导电域壁的铁电材料和经历金属-绝缘体相变的材料是两种主要的材料系统,在这种材料系统中,纳米级的压力可以实现材料中的受限导电态,并潜在地实现对这种界面的确定性控制。这两种体系都允许导电壁或相在整体上共存,但在充分利用效应本身之前,局部应力导致这些材料中形成导电界面或通道的机制仍有待于很好地了解。对于潜在的应用,还需要评估在压力下形成通道的简易性、稳定性和可重构性。为了解决这些问题,这项提议的主要目标是建立压力中介的局域纳米级导电态的控制,并对与这种行为相关的物理学有一个基本的理解,以便能够实现对导电界面的可靠控制,作为迈向纳米电路的第一步。通过原子力显微镜(AFM)针尖施加的压力将被用来在三种不同的材料中注入导电态:不适当的铁电材料、混合相铁电体和经历金属-绝缘体相变的材料,每种材料都代表通过压力诱导写入创建的独特类型的导电界面。在这三种情况下,都将评估尖端压力诱导的导电壁/相的可控程度,并进行实验以确定所产生的界面的物理来源和潜在的导电性机制。通过对这些材料中压力诱导导电性机制的掌握,我们的目标是能够精确地控制这些受限壁或相的形成和湮灭。将评估压力介导的传导行为控制与其他刺激的互补性,以实现传导通道和读取/擦除能力的最佳可重构性。将进行侧电极之间压力感应传导通道的概念验证演示。因此,基于原子力显微镜的方法将有助于在所讨论的材料系统中建立压致导电态的基础物理,并为开发用于直接写入纳米电路的其他纳米压印方法提供关键的见解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hall effect in charged conducting ferroelectric domain walls.
  • DOI:
    10.1038/ncomms13764
  • 发表时间:
    2016-12-12
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
Functional and structural effects of layer periodicity in chemical solution-deposited Pb(Zr,Ti)O 3 thin films
化学溶液沉积Pb(Zr,Ti)O 3 薄膜层周期性的功能和结构效应
Deterministic Dual Control of Phase Competition in Strained BiFeO3: A Multiparametric Structural Lithography Approach
  • DOI:
    10.1007/s41871-021-00123-5
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Black;David Edwards;N. Browne;J. Guy;Niyorjyoti Sharma;Kristina M. Holsgrove;A. Naden;
  • 通讯作者:
    Nathan Black;David Edwards;N. Browne;J. Guy;Niyorjyoti Sharma;Kristina M. Holsgrove;A. Naden;
Nanodomain patterns in ultra-tetragonal lead titanate (PbTiO3)
  • DOI:
    10.1063/5.0007148
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Amit Kumar;J. Guy;Linxing Zhang;Jun Chen;J. Gregg;J. Scott
  • 通讯作者:
    Amit Kumar;J. Guy;Linxing Zhang;Jun Chen;J. Gregg;J. Scott
Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite.
  • DOI:
    10.1038/ncomms15105
  • 发表时间:
    2017-05-16
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    McQuaid RGP;Campbell MP;Whatmore RW;Kumar A;Gregg JM
  • 通讯作者:
    Gregg JM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amit Kumar其他文献

Oral candidiasis in Chikungunya viral fever: a case report
基孔肯雅病毒热中的口腔念珠菌病:病例报告
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jairaj C Kumar;Y. Vivek;PK Sudhindra;B. Dhananjaya;Amit Kumar;K. Guru;Arunachalam Kumar;M. B. Hegde
  • 通讯作者:
    M. B. Hegde
Comparison of vegetable and volatile oils as skin permeation enhancers for transdermal delivery of losartan potassium
植物油和挥发油作为氯沙坦钾透皮给药皮肤渗透促进剂的比较
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amit Kumar;G. Aggarwal;Kashmir Singh;S. Harikumar
  • 通讯作者:
    S. Harikumar
Conducting carbon nanopatterns (nanowire) by energetic ion irradiation
通过高能离子辐照导电碳纳米图案(纳米线)
  • DOI:
    10.1088/0022-3727/41/9/095304
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amit Kumar;F. Singh;A. Tripathi;J. Pernot;J. Pivin;D. Avasthi
  • 通讯作者:
    D. Avasthi
Outer membrane proteins of Fusobacterium necrophorum subsp. necrophorum and subsp. funduliforme
坏死梭杆菌亚种的外膜蛋白。
  • DOI:
    10.1002/jobm.201200748
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Amit Kumar;G. Peterson;T. Nagaraja;S. Narayanan
  • 通讯作者:
    S. Narayanan
Structural and mechanistic insights into an Fe³⁺-triggered quinazoline based molecular rotor.
对 Fe3+ 触发的喹唑啉基分子转子的结构和机械见解。
  • DOI:
    10.1039/c4cc01917b
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    R. Pandey;G. Méhes;Amit Kumar;R. Gupta;C. Adachi;D. S. Pandey
  • 通讯作者:
    D. S. Pandey

Amit Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amit Kumar', 18)}}的其他基金

Mechanism and Machine Led Catalyst Discovery for a Circular Economy
循环经济的机制和机器主导的催化剂发现
  • 批准号:
    EP/Y005449/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
    Research Grant
New Directions for the Synthesis and Degradation of Renewable and Recyclable Plastics Using Homogeneous Catalytic (De)hydrogenation
利用均相催化(脱)加氢合成和降解可再生和可回收塑料的新方向
  • 批准号:
    MR/W007460/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.58万
  • 项目类别:
    Fellowship
Quantitative Hall Voltage mapping at conducting Ferroelectric domain walls: A novel approach to extracting conduction mechanisms on the nanoscale
导电铁电畴壁上的定量霍尔电压映射:一种提取纳米级传导机制的新方法
  • 批准号:
    EP/S037179/1
  • 财政年份:
    2019
  • 资助金额:
    $ 12.58万
  • 项目类别:
    Research Grant

相似国自然基金

原发性开角型青光眼中SIPA1L1促进小梁网细胞外基质蛋白累积升高眼压的作用机制
  • 批准号:
    82371054
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于压力敏感肾单位微流控芯片的肾上皮细胞CAT1-mTOR通路在梗阻性肾损伤中的作用机制研究
  • 批准号:
    82370678
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于microRNA前体性质的microRNA演化研究
  • 批准号:
    31100951
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
气体信号分子硫化氢对颈动脉窦压力反射感受器的调节作用及机制
  • 批准号:
    81100181
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于非接触测量的超高温MEMS压力传感器基础研究
  • 批准号:
    51075375
  • 批准年份:
    2010
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
流场压力降及其脉动信号诱导内皮细胞损伤的作用和机理研究
  • 批准号:
    30670515
  • 批准年份:
    2006
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Unlocking exceptional properties through pressure-induced phase transitions
通过压力诱导的相变释放卓越的性能
  • 批准号:
    DP240101678
  • 财政年份:
    2024
  • 资助金额:
    $ 12.58万
  • 项目类别:
    Discovery Projects
Bilirubin Catabolism induces Plasminogen-Activator Inhibitor 1 (PAI-1) worsening Metabolic Dysfunction
胆红素分解代谢诱导纤溶酶原激活剂抑制剂 1 (PAI-1) 恶化代谢功能障碍
  • 批准号:
    10750132
  • 财政年份:
    2024
  • 资助金额:
    $ 12.58万
  • 项目类别:
An experimental study on the shear instability induced by the high-pressure transformation of mantle olivine leading to the deep-focus earthquakes
地幔橄榄石高压转变引起深源地震剪切失稳的实验研究
  • 批准号:
    23KJ1743
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Trpv4 regulation of lymphatic vascular function: Implications in metabolic syndrome
Trpv4 对淋巴管功能的调节:对代谢综合征的影响
  • 批准号:
    10638806
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
Neural Mechanisms of Obesity-Induced Hypertension
肥胖引起的高血压的神经机制
  • 批准号:
    10677977
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
  • 批准号:
    10663613
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
  • 批准号:
    10753836
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
Vascular Determinants of Anesthesia-Induced Hypotension at the Extremes of Age
极端年龄时麻醉引起的低血压的血管决定因素
  • 批准号:
    10711597
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
  • 批准号:
    10656057
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
Roles of Glial Autophagy in Breast Cancer Brain Metastasis
胶质细胞自噬在乳腺癌脑转移中的作用
  • 批准号:
    10660141
  • 财政年份:
    2023
  • 资助金额:
    $ 12.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了