Freight Traffic Control 2050: transforming the energy demands of last-mile urban freight through collaborative logistics

2050 年货运交通控制:通过协作物流改变最后一英里城市货运的能源需求

基本信息

  • 批准号:
    EP/N02222X/1
  • 负责人:
  • 金额:
    $ 148.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

CONTEXT OF THE RESEARCH: Freight transport accounts for 16% of all motorised road vehicle activity in British towns and cities and is therefore a major consumer of fossil fuels and contributor to CO2 and air pollution. In London, road freight transport accounts for 23%, 36% and 39% of total road-based CO2, NOx and PM10 emissions respectively. Van traffic is forecast to grow strongly as a result of:1) Growing demand for new ways of buying goods and fulfilling deliveries including online shopping.2) Expanding urban populations through greater levels of urbanisation and migration patterns.3) Urban de-industrialisation and the rise of the service-based economy.4) Increasing demand for outsourced servicing functions such as the provision of utilities and construction.5) Logistics sprawl, with warehouses relocated to the edge of the urban area result in longer journeys. Unlike many other sectors, the freight industry has few barriers to new entrants and is a highly competitive marketplace characterised by low-profit margins and a proliferation of operators. Due to the fierce competition that exists, these carriers traditionally operate in isolation of each other with poor vehicle utilisation rates and delivery rounds that overlap, leading to increased traffic congestion, pollution and demands for energy.Aims and Objectives: Our research vision is to understand the extent to which closer operational collaboration between parcel carriers offers the potential to reduce urban traffic and energy demand whilst still maintaining customer service levels, and to what extent such relationships can develop naturally within a commercial setting or whether a 3rd party 'Freight Traffic Controller' (FTC) would be instrumental to ensure the equitable distribution of demand across an urban area. Our key research objectives are to:1. Investigate the collective transport and energy impacts of current parcel carrier activities;2. Create a database to gather and interrogate collection and delivery schedules supplied by different carriers;3. Use the data with a series of optimisation algorithms to investigate the potential transport and energy benefits if carriers were to share deliveries and collections more equitably between them and develop tools to help visualise those benefits;4. Evaluate what business models would be needed to enable carriers to collaborate in this way;5. Investigate the role a 3rd party 'Freight Traffic Controller' could play in stimulating collaboration between carriers to reduce energy demand and vehicle impacts across a city;6. Identify the key legal and privacy issues associated with the receipt, processing and visualisation of such collaborative schedules.POTENTIAL APPLICATIONS AND BENEFITS: Our research outcomes will be trialled by TNT and Gnewt Cargo as part of the project and will provide them and other carriers with evidence of the tangible benefits from adopting collaborative collection and delivery schedule management for better utilising their vehicles in urban centres. Should the business models prove successful, they will be transferable to other important sectors of urban freight transport (e.g. construction, waste, food and service-based logistics). We will also provide policy insight to Transport for London and other urban planning authorities into the merits of the FTC concept for controlling freight vehicles entering their urban centres and aiding their directive of introducing CO2 free city logistics by 2030. System designers looking to commercially develop the FTC concept will benefit from our approaches for integrating, modelling and visualising vast data sets for collaborative decision support, and how to navigate the commercial and privacy issues associated with handling multi-client data. The Operational Research community will benefit from the optimisation and gaming models as they will give a new insight into how such tools can be effectively used with very large data sets.
研究背景:货运占英国城镇所有机动道路车辆活动的 16%,因此是化石燃料的主要消耗者,也是二氧化碳和空气污染的造成者。在伦敦,公路货运分别占公路 CO2、NOx 和 PM10 排放总量的 23%、36% 和 39%。预计货车交通量将强劲增长,原因如下:1) 对购买商品和完成送货的新方式(包括在线购物)的需求不断增长。2) 通过提高城市化水平和移民模式扩大城市人口。3) 城市去工业化和服务型经济的兴起。4) 对提供公用事业和建筑等外包服务功能的需求不断增加。5) 物流无序扩张,仓库迁往 城市边缘导致旅程更长。与许多其他行业不同,货运行业对新进入者几乎没有障碍,并且是一个竞争激烈的市场,其特点是利润率低且运营商激增。由于存在激烈的竞争,这些承运商传统上彼此独立运营,车辆利用率低下,送货轮次重叠,导致交通拥堵、污染和能源需求增加。目的和目标:我们的研究愿景是了解包裹承运商之间更紧密的运营合作在多大程度上有可能减少城市交通和能源需求,同时仍保持客户服务水平,以及这种关系在商业环境中可以在多大程度上自然发展,或者是否可以在商业环境中自然发展。 第 3 方“货运交通控制器”(FTC)将有助于确保整个城市地区需求的公平分配。我们的主要研究目标是:1.调查当前包裹承运商活动对集体运输和能源的影响;2.创建一个数据库来收集和查询不同承运商提供的收集和交付时间表;3.使用这些数据和一系列优化算法来调查承运商之间更公平地共享交付和收集所带来的潜在运输和能源效益,并开发工具来帮助可视化这些效益;4。评估需要什么商业模式才能使运营商以这种方式进行协作;5.研究第三方“货运交通控制器”在促进承运商之间的合作以减少整个城市的能源需求和车辆影响方面可以发挥的作用;6。确定与此类协作时间表的接收、处理和可视化相关的关键法律和隐私问题。潜在的应用和好处:作为该项目的一部分,我们的研究成果将由 TNT 和 Gnewt Cargo 进行试验,并将为他们和其他承运人提供证据,证明采用协作收集和交付时间表管理可以更好地利用其在城市中心的车辆所带来的实际好处。如果这些商业模式被证明是成功的,它们将可以转移到城市货运的其他重要部门(例如建筑、垃圾、食品和服务型物流)。我们还将向伦敦交通局和其他城市规划机构提供政策见解,了解 FTC 概念在控制货运车辆进入城市中心方面的优点,并协助他们制定到 2030 年引入无二氧化碳城市物流的指令。希望商业开发 FTC 概念的系统设计者将受益于我们集成、建模和可视化大量数据集以提供协作决策支持的方法,以及如何解决与处理相关的商业和隐私问题。 多客户端数据。运筹学社区将从优化和博弈模型中受益,因为它们将为如何有效地将此类工具用于非常大的数据集提供新的见解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling a Freight Traffic Controller for Collaborative Multidrop Urban Logistics Practical and Theoretical Challenges
使货运交通控制器能够应对协作多点城市物流的实践和理论挑战
An analysis of the parcels market and parcel carriers' operations in the UK
英国包裹市场和包裹承运商运营分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen, J
  • 通讯作者:
    Allen, J
Increasing Productivity of Parcel Operations
提高包裹运营的生产力
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen J
  • 通讯作者:
    Allen J
Land-Use Related Freight Transport Challenges and Opportunities in London
伦敦与土地利用相关的货运挑战和机遇
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen, J
  • 通讯作者:
    Allen, J
Understanding the transport and CO2 impacts of on-demand meal deliveries: A London case study
  • DOI:
    10.1016/j.cities.2020.102973
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Allen, Julian;Piecyk, Maja;Wise, Sarah
  • 通讯作者:
    Wise, Sarah
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tom Cherrett其他文献

Supporting inclusive debate on Advanced Air Mobility: An evaluation
支持关于先进空中交通的包容性辩论:一项评估
Avoiding automation surprise: Identifying requirements to support pilot intervention in automated Uncrewed Aerial Vehicle (UAV) flight
避免自动化意外:确定支持飞行员干预无人驾驶飞行器(UAV)飞行的要求
  • DOI:
    10.1016/j.apergo.2025.104516
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Ben Grindley;Katie Phillips;Katie J. Parnell;Tom Cherrett;James Scanlan;Katherine L. Plant
  • 通讯作者:
    Katherine L. Plant
Over a decade of UAV incidents: A human factors analysis of causal factors
  • DOI:
    10.1016/j.apergo.2024.104355
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ben Grindley;Katie Phillips;Katie J. Parnell;Tom Cherrett;James Scanlan;Katherine L. Plant
  • 通讯作者:
    Katherine L. Plant

Tom Cherrett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tom Cherrett', 18)}}的其他基金

E-Drone: Transforming the energy demand of supply chains through integrated UAV-to-land logistics for 2030
E-Drone:2030 年通过无人机到陆地一体化物流改变供应链的能源需求
  • 批准号:
    EP/V002619/1
  • 财政年份:
    2021
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Research Grant
I want it now -TTE 2018
我现在就想要 -TTE 2018
  • 批准号:
    EP/T517744/1
  • 财政年份:
    2019
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Research Grant
Internet of Cars: A Distributed Exhibition & Public Talks
车联网:分布式展览
  • 批准号:
    EP/L02571X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Research Grant
(SANDPIT) Sixth Sense Transport (Reducing/re-distributing transport options through a flexible interpretation of time)
(SANDPIT) 第六感交通(通过灵活地解释时间来减少/重新分配交通选项)
  • 批准号:
    EP/J004650/1
  • 财政年份:
    2011
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
  • 批准号:
    2318696
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
  • 批准号:
    2320697
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Standard Grant
Predictive Analytics and Real-time Traffic Control for Urban Corridors
城市走廊的预测分析和实时交通控制
  • 批准号:
    LP200301389
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Linkage Projects
Self-adaptive and Cooperative Multi-agent Reinforcement Learning-based Network Traffic Control
基于强化学习的自适应协作多智能体网络流量控制
  • 批准号:
    23K19982
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Air Traffic Control Trajectory Based Operations
空中交通管制基于轨迹的操作
  • 批准号:
    10109613
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    EU-Funded
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
  • 批准号:
    2320698
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Standard Grant
Artificial Intelligence controller able to manage Air traffic Control (ATC) and Air Traffic Flow Management (ATFM) within a single framework
人工智能控制器能够在单一框架内管理空中交通管制(ATC)和空中交通流量管理(ATFM)
  • 批准号:
    10075687
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    EU-Funded
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
  • 批准号:
    2318697
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Standard Grant
CAREER: Conflicting Traffic Streams with Mixed Traffic: Modeling and Control
职业:冲突交通流与混合交通:建模和控制
  • 批准号:
    2401555
  • 财政年份:
    2023
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning-Based Scalable Predictive Control Strategies for Heterogeneous Traffic Networks
协作研究:异构交通网络基于学习的可扩展预测控制策略
  • 批准号:
    2130704
  • 财政年份:
    2022
  • 资助金额:
    $ 148.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了